期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于异常特征模式的心电数据标签清洗方法
1
作者 韩京宇 陈伟 +2 位作者 赵静 郎杭 毛毅 《计算机研究与发展》 EI CSCD 北大核心 2023年第11期2594-2610,共17页
心电图(electrocardiogram,ECG)异常的自动检测是一个典型的多标签分类问题,训练分类器需要大量有高质量标签的样本.但心电数据集异常标签经常缺失或错误,如何清洗弱标签得到干净的心电数据集是一个亟待解决的问题.在一个标签完整且准... 心电图(electrocardiogram,ECG)异常的自动检测是一个典型的多标签分类问题,训练分类器需要大量有高质量标签的样本.但心电数据集异常标签经常缺失或错误,如何清洗弱标签得到干净的心电数据集是一个亟待解决的问题.在一个标签完整且准确的示例数据集辅助下,提出一种基于异常特征模式(abnormality-feature pattern,AFP)的方法对弱标签心电数据进行标签清洗,以获取所有正确的异常标签.清洗分2个阶段,即基于聚类的规则构造和基于迭代的标签清洗.在第1阶段,通过狄利克雷过程混合模型(Dirichlet process mixture model,DPMM)聚类,识别每个异常标签对应的不同特征模式,进而构建异常发现规则、排除规则和1组二分类器.在第2阶段,根据发现和排除规则辨识初始相关标签集,然后根据二分类器迭代扩展相关标签并排除不相关标签.AFP方法捕捉了示例数据集和弱标签数据集的共享特征模式,既应用了人的知识,又充分利用了正确标记的标签;同时,渐进地去除错误标签和填补缺失标签,保证了标签清洗的可靠性.真实和模拟数据集上的实验证明了AFP方法的有效性. 展开更多
关键词 心电图 标签分类 异常标签 异常特征模式 二分类器 标签清洗
下载PDF
电能表贴标机异常贴标图像识别方法研究 被引量:3
2
作者 洪巧文 张荔鹃 +4 位作者 周厚源 王姣 苏东升 黄大荣 马争锋 《自动化仪表》 CAS 2022年第4期22-26,32,共6页
针对电能表自动化生产线上贴标机工作过程中出现的贴标异常问题,开展了有关异常贴标图像的识别方法研究。通过综合采用图像增强技术、梯度直方图(HOG)算法、支持向量机(SVM)、卷积神经网络(CNN)模型以及残差网络(ResNet)模型等理论、技... 针对电能表自动化生产线上贴标机工作过程中出现的贴标异常问题,开展了有关异常贴标图像的识别方法研究。通过综合采用图像增强技术、梯度直方图(HOG)算法、支持向量机(SVM)、卷积神经网络(CNN)模型以及残差网络(ResNet)模型等理论、技术和方法,提出了一种有效的异常贴标图像的识别方法。使用HOG+SVM、VGG-16和ResNet模型,在平衡后的数据集中进行了模型训练和样本识别的试验。试验结果表明,深度神经网络模型在训练与测试集中的识别效果具有明显提升。其中,ResNet模型的识别精度更高(训练集识别精度为100%,测试集识别精度为89%)。该研究为适用于电能表问题贴标的识别筛选提供了有效方法,为实际应用打下了基础。 展开更多
关键词 电能表 异常标签 梯度直方图 卷积神经网络 支持向量机 残差网络 图像识别 样本均衡
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部