Understanding the continental margin of the Northeastern South China Sea is critical to the study of deep structures, tectonic evolution, and dynamics of the region. One set of important data for this endeavor is the ...Understanding the continental margin of the Northeastern South China Sea is critical to the study of deep structures, tectonic evolution, and dynamics of the region. One set of important data for this endeavor is the total-field magnetic data. Given the challenges associated with the magnetic data at low latitudes and with remanent magnetism in this area, we combine the equivalent-source technique and magnetic amplitude inversion to recover 3D subsurface magnetic structures. The inversion results show that this area is characterized by a north-south block division and east-west zonation. Magnetic regions strike in EW, NE and NW direction and are consistent with major tectonic trends in the region. The highly magnetic zone recovered from inversion in the continental margin differs visibly from that of the magnetically quiet zones to the south. The magnetic anomaly zone strikes in NE direction, covering an area of about 500 km × 60 km, and extending downward to a depth of 25 km or more. In combination with other geophysical data, we suggest that this strongly magnetic zone was produced by deep underplating of magma associated with plate subduction in Mesozoic period. The magnetically quiet zone in the south is an EW trending unit underlain by broad and gentle magnetic layers of lower crust. Its magnetic structure bears a clear resemblance to oceanic crust, assumed to be related to the presence of ancient oceanic crust there.展开更多
An intrusion detection (ID) model is proposed based on the fuzzy data mining method. A major difficulty of anomaly ID is that patterns of the normal behavior change with time. In addition, an actual intrusion with a...An intrusion detection (ID) model is proposed based on the fuzzy data mining method. A major difficulty of anomaly ID is that patterns of the normal behavior change with time. In addition, an actual intrusion with a small deviation may match normal patterns. So the intrusion behavior cannot be detected by the detection system.To solve the problem, fuzzy data mining technique is utilized to extract patterns representing the normal behavior of a network. A set of fuzzy association rules mined from the network data are shown as a model of “normal behaviors”. To detect anomalous behaviors, fuzzy association rules are generated from new audit data and the similarity with sets mined from “normal” data is computed. If the similarity values are lower than a threshold value,an alarm is given. Furthermore, genetic algorithms are used to adjust the fuzzy membership functions and to select an appropriate set of features.展开更多
In order to implement the real-time detection of abnormality of elder and devices in an empty nest home,multi-modal joint sensors are used to collect discrete action sequences of behavior,and the improved hierarchical...In order to implement the real-time detection of abnormality of elder and devices in an empty nest home,multi-modal joint sensors are used to collect discrete action sequences of behavior,and the improved hierarchical hidden Markov model is adopted to Abstract these discrete action sequences captured by multi-modal joint sensors into an occupant’s high-level behavior—event,then structure representation models of occupant normality are modeled from large amounts of spatio-temporal data. These models are used as classifiers of normality to detect an occupant’s abnormal behavior.In order to express context information needed by reasoning and detection,multi-media ontology (MMO) is designed to annotate and reason about the media information in the smart monitoring system.A pessimistic emotion model (PEM) is improved to analyze multi-interleaving events of multi-active devices in the home.Experiments demonstrate that the PEM can enhance the accuracy and reliability for detecting active devices when these devices are in blind regions or are occlusive. The above approach has good performance in detecting abnormalities involving occupants and devices in a real-time way.展开更多
Defining abnormal transmittance as the case where the magnitude of the shortwave flux transmittance is greater than 1.0,the authors used surface solar irradiance and all-sky images obtained at the Yangbajing site in T...Defining abnormal transmittance as the case where the magnitude of the shortwave flux transmittance is greater than 1.0,the authors used surface solar irradiance and all-sky images obtained at the Yangbajing site in Tibet to analyze the reasons for the occurrence of abnormal shortwave flux transmittance.Based on the International Intercomparision of Three-Dimensional Radiation Code(I3RC) Monte Carlo community model of three-dimensional radiative transfer,the authors also performed simulations at a nonabsorbing wavelength and an absorbing wavelength through a stratocumulus and a cumulus field.The results showed the detection of abnormal transmittance on more than half the days,and the maximum transmittance was 1.34.The probability of the occurrence of abnormal transmittance appeared to be largest in summer,and on a daily basis was mainly at about noon local time.Abnormal transmittance mainly appeared when clear sky and clouds co-existed,especially at the edges of broken clouds and nearby regions with clear-sky conditions.The flux transmittance decreased as the solar zenith angle increased.展开更多
Previous research has defined the index of the Indian-Pacific thermodynamic anomaly joint mode (IPTAJM) and suggested that the winter IPTAJM has an important impact on summer rainfall over China. However, the possible...Previous research has defined the index of the Indian-Pacific thermodynamic anomaly joint mode (IPTAJM) and suggested that the winter IPTAJM has an important impact on summer rainfall over China. However, the possible causes for the interannual and decadal variability of the IPTAJM are still unclear. Therefore, this work investigates zonal displacements of both the western Pacific warm pool (WPWP) and the eastern Indian Ocean warm pool (EIOWP). The relationships between the WPWP and the EIOWP and the IPTAJM are each examined, and then the impacts of the zonal wind anomalies over the equatorial Pacific and Indian Oceans on the IPTAJM are studied. The WPWP eastern edge anomaly displays significant interannual and decadal variability and experienced a regime shift in about 1976 and 1998, whereas the EIOWP western edge exhibits only distinct interannual variability. The decadal variability of the IPTAJM may be mainly caused by both the zonal migration of the WPWP and the 850 hPa zonal wind anomaly over the central equatorial Pacific. On the other hand, the zonal migrations of both the WPWP and the EIOWP and the zonal wind anomalies over the central equatorial Pacific and the eastern equatorial Indian Ocean may be all responsible for the interannual variability of the IPTAJM.展开更多
Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading mont...Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading months was performed by using one-, four-, and sevenmonth lead retrospective forecasts (hindcasts) of four coupled models from Ensembles-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) for the period of 1960 2005. It is found that the WNP summer anomalies, including lower-tropospheric circulation and precipitation anomalies, can be well predicted for all these leading months. The accuracy of the four-month lead prediction is only slightly weaker than that of the one-month lead prediction, although the skill decreases with the increase of leading months.展开更多
基金supported by the Chinese Scholarship Foundation,the Gravity and Magnetics Research Consortium(GMRC)the National Natural Science Foundation of China(No.41074095)+1 种基金the National Special Project(No.201011039)the Open Project of the National Key Laboratory for Geological Processes and Mineral Resources(No.GPMR0942)
文摘Understanding the continental margin of the Northeastern South China Sea is critical to the study of deep structures, tectonic evolution, and dynamics of the region. One set of important data for this endeavor is the total-field magnetic data. Given the challenges associated with the magnetic data at low latitudes and with remanent magnetism in this area, we combine the equivalent-source technique and magnetic amplitude inversion to recover 3D subsurface magnetic structures. The inversion results show that this area is characterized by a north-south block division and east-west zonation. Magnetic regions strike in EW, NE and NW direction and are consistent with major tectonic trends in the region. The highly magnetic zone recovered from inversion in the continental margin differs visibly from that of the magnetically quiet zones to the south. The magnetic anomaly zone strikes in NE direction, covering an area of about 500 km × 60 km, and extending downward to a depth of 25 km or more. In combination with other geophysical data, we suggest that this strongly magnetic zone was produced by deep underplating of magma associated with plate subduction in Mesozoic period. The magnetically quiet zone in the south is an EW trending unit underlain by broad and gentle magnetic layers of lower crust. Its magnetic structure bears a clear resemblance to oceanic crust, assumed to be related to the presence of ancient oceanic crust there.
文摘An intrusion detection (ID) model is proposed based on the fuzzy data mining method. A major difficulty of anomaly ID is that patterns of the normal behavior change with time. In addition, an actual intrusion with a small deviation may match normal patterns. So the intrusion behavior cannot be detected by the detection system.To solve the problem, fuzzy data mining technique is utilized to extract patterns representing the normal behavior of a network. A set of fuzzy association rules mined from the network data are shown as a model of “normal behaviors”. To detect anomalous behaviors, fuzzy association rules are generated from new audit data and the similarity with sets mined from “normal” data is computed. If the similarity values are lower than a threshold value,an alarm is given. Furthermore, genetic algorithms are used to adjust the fuzzy membership functions and to select an appropriate set of features.
基金The National Natural Science Foundation of China(No.60773110)the Youth Education Fund of Hunan Province(No.07B014)
文摘In order to implement the real-time detection of abnormality of elder and devices in an empty nest home,multi-modal joint sensors are used to collect discrete action sequences of behavior,and the improved hierarchical hidden Markov model is adopted to Abstract these discrete action sequences captured by multi-modal joint sensors into an occupant’s high-level behavior—event,then structure representation models of occupant normality are modeled from large amounts of spatio-temporal data. These models are used as classifiers of normality to detect an occupant’s abnormal behavior.In order to express context information needed by reasoning and detection,multi-media ontology (MMO) is designed to annotate and reason about the media information in the smart monitoring system.A pessimistic emotion model (PEM) is improved to analyze multi-interleaving events of multi-active devices in the home.Experiments demonstrate that the PEM can enhance the accuracy and reliability for detecting active devices when these devices are in blind regions or are occlusive. The above approach has good performance in detecting abnormalities involving occupants and devices in a real-time way.
基金supported by the National Natural Science Foundation of China (Grant No.41275040)
文摘Defining abnormal transmittance as the case where the magnitude of the shortwave flux transmittance is greater than 1.0,the authors used surface solar irradiance and all-sky images obtained at the Yangbajing site in Tibet to analyze the reasons for the occurrence of abnormal shortwave flux transmittance.Based on the International Intercomparision of Three-Dimensional Radiation Code(I3RC) Monte Carlo community model of three-dimensional radiative transfer,the authors also performed simulations at a nonabsorbing wavelength and an absorbing wavelength through a stratocumulus and a cumulus field.The results showed the detection of abnormal transmittance on more than half the days,and the maximum transmittance was 1.34.The probability of the occurrence of abnormal transmittance appeared to be largest in summer,and on a daily basis was mainly at about noon local time.Abnormal transmittance mainly appeared when clear sky and clouds co-existed,especially at the edges of broken clouds and nearby regions with clear-sky conditions.The flux transmittance decreased as the solar zenith angle increased.
基金Supported by the National Basic Research Development Program of China (973 Program) (No.2006CB403606)the Knowledge Innovation Program of Chinese Adademy of Sciences (KZCX3-SW-215)Special Project for Marine Public Walfare Industry (No. 200705010)
文摘Previous research has defined the index of the Indian-Pacific thermodynamic anomaly joint mode (IPTAJM) and suggested that the winter IPTAJM has an important impact on summer rainfall over China. However, the possible causes for the interannual and decadal variability of the IPTAJM are still unclear. Therefore, this work investigates zonal displacements of both the western Pacific warm pool (WPWP) and the eastern Indian Ocean warm pool (EIOWP). The relationships between the WPWP and the EIOWP and the IPTAJM are each examined, and then the impacts of the zonal wind anomalies over the equatorial Pacific and Indian Oceans on the IPTAJM are studied. The WPWP eastern edge anomaly displays significant interannual and decadal variability and experienced a regime shift in about 1976 and 1998, whereas the EIOWP western edge exhibits only distinct interannual variability. The decadal variability of the IPTAJM may be mainly caused by both the zonal migration of the WPWP and the 850 hPa zonal wind anomaly over the central equatorial Pacific. On the other hand, the zonal migrations of both the WPWP and the EIOWP and the zonal wind anomalies over the central equatorial Pacific and the eastern equatorial Indian Ocean may be all responsible for the interannual variability of the IPTAJM.
基金supported by the Special Scientific Research Project for Public Interest (Grant No.GYHY201006021)supported by the U.K. National Centre for Atmospheric Science-Climate (NCAS-Climate) at the University of Reading
文摘Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading months was performed by using one-, four-, and sevenmonth lead retrospective forecasts (hindcasts) of four coupled models from Ensembles-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) for the period of 1960 2005. It is found that the WNP summer anomalies, including lower-tropospheric circulation and precipitation anomalies, can be well predicted for all these leading months. The accuracy of the four-month lead prediction is only slightly weaker than that of the one-month lead prediction, although the skill decreases with the increase of leading months.