This paper presents an urban expressway video surveillance and monitoring system for traffic flow measurement and abnormal performance detection. The proposed flow detection module collects traffic flow statistics in ...This paper presents an urban expressway video surveillance and monitoring system for traffic flow measurement and abnormal performance detection. The proposed flow detection module collects traffic flow statistics in real time by leveraging multi-vehicle tracking information. Based on these online statistics, road operating situations can be easily obtained. Using spatiotemporal trajectories, vehicle motion paths are encoded by hidden Markov models. With path division and parameter matching, abnormal performances containing extra low or high speed driving, illegal stopping and turning are detected in real scenes. The traffic surveillance approach is implemented and evaluated on a DM642 DSP-based embedded platform. Experimental results demonstrate that the proposed system is feasible for the detection of vehicle speed, vehicle counts and road efficiency, and it is effective for the monitoring of the aforementioned anomalies with low computational costs.展开更多
Patients with extensive ulcerative colitis(UC) of more than eight years duration have an increased risk of colorectal cancer. Molecular biomarkers for dysplasia and cancer could have a great clinical value in managing...Patients with extensive ulcerative colitis(UC) of more than eight years duration have an increased risk of colorectal cancer. Molecular biomarkers for dysplasia and cancer could have a great clinical value in managing cancer risk in these UC patients. Using a wide range of molecular techniques- including cutting-edge OMICS technologies- recent studies have identified clinically relevant biomarker candidates from a variety of biosamples, including colonic biopsies, blood, stool, and urine. While the challenge remains to validate these candidate biomarkers in multi-center studies and with larger patient cohorts, it is certain that accurate biomarkers of colitis-associated neoplasia would improve clinical management of neoplastic risk in UC patients. This review highlights the ongoing avenues of research in biomarker development for colitis-associated colorectal cancer.展开更多
Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for position...Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for positioning of general aviation aircraft.Aim to acquire the accurate position information of aircraft and detect anomaly data,the ADS-B anomaly data detection model based on deep learning and difference of Gaussian(DoG)approach is proposed.First,according to the characteristic of ADS-B data,the ADS-B position data are transformed into the coordinate system.And the origin of the coordinate system is set up as the take-off point.Then,based on the kinematic principle,the ADS-B anomaly data can be removed.Moreover,the details of the ADS-B position data can be got by the DoG approach.Finally,the long short-term memory(LSTM)neural network is used to optimize the recurrent neural network(RNN)with severe gradient reduction for processing ADS-B data.The position data of ADS-B are reconstructed by the sequence to sequence(seq2seq)model which is composed of LSTM neural network,and the reconstruction error is used to detect the anomalous data.Based on the real flight data of general aviation aircraft,the simulation results show that the anomaly data can be detected effectively by the proposed method of reconstructing ADS-B data with the seq2seq model,and its running time is reduced.Compared with the RNN,the accuracy of anomaly detection is increased by 2.7%.The performance of the proposed model is better than that of the traditional anomaly detection models.展开更多
Video synopsis is an effective and innovative way to produce short video abstraction for huge video archives,while keeping the dynamic characteristic of activities in the original video.Abnormal activity,as the critic...Video synopsis is an effective and innovative way to produce short video abstraction for huge video archives,while keeping the dynamic characteristic of activities in the original video.Abnormal activity,as the critical event,is always the main concern in video surveillance context.However,in traditional video synopsis,all the normal and abnormal activities are condensed together equally,which can make the synopsis video confused and worthless.In addition,the traditional video synopsis methods always neglect redundancy in the content domain.To solve the above-mentioned issues,a novel video synopsis method is proposed based on abnormal activity detection and key observation selection.In the proposed algorithm,activities are classified into normal and abnormal ones based on the sparse reconstruction cost from an atomically learned activity dictionary.And key observation selection using the minimum description length principle is conducted for eliminating content redundancy in normal activity.Experiments conducted in publicly available datasets demonstrate that the proposed approach can effectively generate satisfying synopsis videos.展开更多
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2009BAG13A04)Jiangsu Transportation Science Research Program(No.08X09)Program of Suzhou Science and Technology(No.SG201076)
文摘This paper presents an urban expressway video surveillance and monitoring system for traffic flow measurement and abnormal performance detection. The proposed flow detection module collects traffic flow statistics in real time by leveraging multi-vehicle tracking information. Based on these online statistics, road operating situations can be easily obtained. Using spatiotemporal trajectories, vehicle motion paths are encoded by hidden Markov models. With path division and parameter matching, abnormal performances containing extra low or high speed driving, illegal stopping and turning are detected in real scenes. The traffic surveillance approach is implemented and evaluated on a DM642 DSP-based embedded platform. Experimental results demonstrate that the proposed system is feasible for the detection of vehicle speed, vehicle counts and road efficiency, and it is effective for the monitoring of the aforementioned anomalies with low computational costs.
文摘Patients with extensive ulcerative colitis(UC) of more than eight years duration have an increased risk of colorectal cancer. Molecular biomarkers for dysplasia and cancer could have a great clinical value in managing cancer risk in these UC patients. Using a wide range of molecular techniques- including cutting-edge OMICS technologies- recent studies have identified clinically relevant biomarker candidates from a variety of biosamples, including colonic biopsies, blood, stool, and urine. While the challenge remains to validate these candidate biomarkers in multi-center studies and with larger patient cohorts, it is certain that accurate biomarkers of colitis-associated neoplasia would improve clinical management of neoplastic risk in UC patients. This review highlights the ongoing avenues of research in biomarker development for colitis-associated colorectal cancer.
基金supported by the National Key R&D Program of China(No.2018AAA0100804)the Talent Project of Revitalization Liaoning(No.XLYC1907022)+5 种基金the Key R&D Projects of Liaoning Province(No.2020JH2/10100045)the Capacity Building of Civil Aviation Safety(No.TMSA1614)the Natural Science Foundation of Liaoning Province(No.2019-MS-251)the Scientific Research Project of Liaoning Provincial Department of Education(Nos.L201705,L201716)the High-Level Innovation Talent Project of Shenyang(No.RC190030)the Second Young and Middle-Aged Talents Support Program of Shenyang Aerospace University.
文摘Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for positioning of general aviation aircraft.Aim to acquire the accurate position information of aircraft and detect anomaly data,the ADS-B anomaly data detection model based on deep learning and difference of Gaussian(DoG)approach is proposed.First,according to the characteristic of ADS-B data,the ADS-B position data are transformed into the coordinate system.And the origin of the coordinate system is set up as the take-off point.Then,based on the kinematic principle,the ADS-B anomaly data can be removed.Moreover,the details of the ADS-B position data can be got by the DoG approach.Finally,the long short-term memory(LSTM)neural network is used to optimize the recurrent neural network(RNN)with severe gradient reduction for processing ADS-B data.The position data of ADS-B are reconstructed by the sequence to sequence(seq2seq)model which is composed of LSTM neural network,and the reconstruction error is used to detect the anomalous data.Based on the real flight data of general aviation aircraft,the simulation results show that the anomaly data can be detected effectively by the proposed method of reconstructing ADS-B data with the seq2seq model,and its running time is reduced.Compared with the RNN,the accuracy of anomaly detection is increased by 2.7%.The performance of the proposed model is better than that of the traditional anomaly detection models.
基金Supported by the National Natural Science Foundation of China(No.61402023)Beijing Technology and Business' University Youth Fund(No.QNJJ2014-23)Beijing Natural Science Foundation(No.4162019)
文摘Video synopsis is an effective and innovative way to produce short video abstraction for huge video archives,while keeping the dynamic characteristic of activities in the original video.Abnormal activity,as the critical event,is always the main concern in video surveillance context.However,in traditional video synopsis,all the normal and abnormal activities are condensed together equally,which can make the synopsis video confused and worthless.In addition,the traditional video synopsis methods always neglect redundancy in the content domain.To solve the above-mentioned issues,a novel video synopsis method is proposed based on abnormal activity detection and key observation selection.In the proposed algorithm,activities are classified into normal and abnormal ones based on the sparse reconstruction cost from an atomically learned activity dictionary.And key observation selection using the minimum description length principle is conducted for eliminating content redundancy in normal activity.Experiments conducted in publicly available datasets demonstrate that the proposed approach can effectively generate satisfying synopsis videos.