The authors studied the seismic activity, precursory anomalies and abnormal animal behavior before the April 14, 2010 Ms 7.1 Yushu earthquake. Analysis showed that anomalies were not rich before the Ms 7.1 Yushu earth...The authors studied the seismic activity, precursory anomalies and abnormal animal behavior before the April 14, 2010 Ms 7.1 Yushu earthquake. Analysis showed that anomalies were not rich before the Ms 7.1 Yushu earthquake, but prominent anomalies were observed, such as the long and mid-term trend anomaly characterized by the seismic quiescence of Ms6. 0, MsS. 0 and Ms4.0 earthquakes, and the anomalies in precursor observation of surface water temperature in Yushu and Delingha and electromagnetic measurement in Ping'an. There were a large number of animal behavior anomalies appearing one week before the earthquake. An M4.7 earthquake occurred 130 minutes before the main shock. In this paper, we studied the dynamic process of the Yushu earthquake preparation using the earthquake focal mechanism solutions on the Bayan Har block boundary since 1996. The results show that the Kalakunlun M7.1 earthquake in 1996, the Mani M7.5 earthquake and the Yushu Ms7.1 earthquake have the same dynamic process. Long and mid-term trend anomalies may be related to the dynamics of evolution of different earthquakes. This paper also discusses the recurrence interval of strong earthquakes, foreshock identification and precursor observation of the Yushu Ms7. 1 earthquake.展开更多
Based on discrete wavelet transform, both relative wavelet energy (RWE) and segment wavelet entropy (SWE) of electroencephalogram (EEG) are defined in this paper. The RWE provides quantitatively the information ...Based on discrete wavelet transform, both relative wavelet energy (RWE) and segment wavelet entropy (SWE) of electroencephalogram (EEG) are defined in this paper. The RWE provides quantitatively the information about the relative energy associated with different frequency bands present in the EEG. The SWE carries information about the degree of order or disorder associated with different time segment of EEG evolution, which can determine the time-segment loealizations of abnormal dynamic processes of brain activity due to the localization characteristics of the wavelet transform. The experimental results show that the RWE and SWE are different between epileptic EEGs and normal EEGs, which demonstrate that the RWE and the SWE are helpful to analyze the dynamic behavior of different EEGs.展开更多
Brain-specific loss of a microtubule-binding protein collapsin response mediator protein-2(CRMP2)in the mouse recapitulates many schizophrenia-like behaviors of human patients,possibly resulting from associated develo...Brain-specific loss of a microtubule-binding protein collapsin response mediator protein-2(CRMP2)in the mouse recapitulates many schizophrenia-like behaviors of human patients,possibly resulting from associated developmental deficits in neuronal differentiation,path-finding,and synapse formation.However,it is still unclear how the Crmp2 loss affects neuronal circuit function and plasticity.By conducting in vivo and ex vivo electrophysiological recording in the mouse primary visual cortex(V1),we reveal that CRMP2 exerts a key regulation on the timing of postnatal critical period(CP)for experience-dependent circuit plasticity of sensory cortex.In the developing V1,the Crmp2 deficiency induces not only a delayed maturation of visual tuning functions but also a precocious CP for visual input-induced ocular dominance plasticity and its induction activity–coincident binocular inputs right after eye-opening.Mechanistically,the Crmp2 deficiency accelerates the maturation process of cortical inhibitory transmission and subsequently promotes an early emergence of balanced excitatory-inhibitory cortical circuits during the postnatal development.Moreover,the precocious CP plasticity results in deteriorated binocular depth perception in adulthood.Thus,these findings suggest that the Crmp2 deficiency dysregulates the timing of CP for experience-dependent refinement of circuit connections and further leads to impaired sensory perception in later life.展开更多
基金funded by Earthquake Tendency Tracing of 2011 of Department of Monitoring and Prediction of CEA under the"Earthquake Short and Imminent Prediction Climb Program of2020"(2011016301)
文摘The authors studied the seismic activity, precursory anomalies and abnormal animal behavior before the April 14, 2010 Ms 7.1 Yushu earthquake. Analysis showed that anomalies were not rich before the Ms 7.1 Yushu earthquake, but prominent anomalies were observed, such as the long and mid-term trend anomaly characterized by the seismic quiescence of Ms6. 0, MsS. 0 and Ms4.0 earthquakes, and the anomalies in precursor observation of surface water temperature in Yushu and Delingha and electromagnetic measurement in Ping'an. There were a large number of animal behavior anomalies appearing one week before the earthquake. An M4.7 earthquake occurred 130 minutes before the main shock. In this paper, we studied the dynamic process of the Yushu earthquake preparation using the earthquake focal mechanism solutions on the Bayan Har block boundary since 1996. The results show that the Kalakunlun M7.1 earthquake in 1996, the Mani M7.5 earthquake and the Yushu Ms7.1 earthquake have the same dynamic process. Long and mid-term trend anomalies may be related to the dynamics of evolution of different earthquakes. This paper also discusses the recurrence interval of strong earthquakes, foreshock identification and precursor observation of the Yushu Ms7. 1 earthquake.
基金GNatural Science Foundatoin of Fujian Province of China grant number: 2010J01210 and T0750008
文摘Based on discrete wavelet transform, both relative wavelet energy (RWE) and segment wavelet entropy (SWE) of electroencephalogram (EEG) are defined in this paper. The RWE provides quantitatively the information about the relative energy associated with different frequency bands present in the EEG. The SWE carries information about the degree of order or disorder associated with different time segment of EEG evolution, which can determine the time-segment loealizations of abnormal dynamic processes of brain activity due to the localization characteristics of the wavelet transform. The experimental results show that the RWE and SWE are different between epileptic EEGs and normal EEGs, which demonstrate that the RWE and the SWE are helpful to analyze the dynamic behavior of different EEGs.
基金the National Natural Science Foundation of China(32071025,31921002,and 31730108)the Beijing Municipal Science&Technology Commission(Z181100001518001)+1 种基金the Interdisciplinary Research Fund of Beijing Normal Universitythe Strategic Priority Research Program and Innovation Program of the Chinese Academy of Sciences(XDB32020100)。
文摘Brain-specific loss of a microtubule-binding protein collapsin response mediator protein-2(CRMP2)in the mouse recapitulates many schizophrenia-like behaviors of human patients,possibly resulting from associated developmental deficits in neuronal differentiation,path-finding,and synapse formation.However,it is still unclear how the Crmp2 loss affects neuronal circuit function and plasticity.By conducting in vivo and ex vivo electrophysiological recording in the mouse primary visual cortex(V1),we reveal that CRMP2 exerts a key regulation on the timing of postnatal critical period(CP)for experience-dependent circuit plasticity of sensory cortex.In the developing V1,the Crmp2 deficiency induces not only a delayed maturation of visual tuning functions but also a precocious CP for visual input-induced ocular dominance plasticity and its induction activity–coincident binocular inputs right after eye-opening.Mechanistically,the Crmp2 deficiency accelerates the maturation process of cortical inhibitory transmission and subsequently promotes an early emergence of balanced excitatory-inhibitory cortical circuits during the postnatal development.Moreover,the precocious CP plasticity results in deteriorated binocular depth perception in adulthood.Thus,these findings suggest that the Crmp2 deficiency dysregulates the timing of CP for experience-dependent refinement of circuit connections and further leads to impaired sensory perception in later life.