The analyses of light hydrocarbons in oils from the Tarim Basin show that the Man-go’s parameter K is about unity except those oils trapped in the eastern part of the Tazhong (Central Tarim) Fault Uplift. The regular...The analyses of light hydrocarbons in oils from the Tarim Basin show that the Man-go’s parameter K is about unity except those oils trapped in the eastern part of the Tazhong (Central Tarim) Fault Uplift. The regular variance of K may indicates the accumulation and admixture of the oil populations in the eastern part of the Tazhong Fault Uplift.展开更多
Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much infor- mation regarding the genetic origin and alteration of crude oils. But secondary alterations--especially biodegrad...Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much infor- mation regarding the genetic origin and alteration of crude oils. But secondary alterations--especially biodegrada- tion--have a significant effect on the composition of LHs in crude oils. Because most of the LHs affected in oils underwent only slight biodegradation (rank 1 on the biodegradation scale), the variation of LHs can be used to describe more the refined features of biodegradation. Here, 23 crude oils from the Dawanqi Oilfield in the Tarim Basin, NW China, eleven of which have been biodegraded to different extents, were analyzed in order to investigate the effect of slight to minor biodegradation on C6--C7 LHs. The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes, followed by branched alkanes. In slight and minor biodegraded oils, such biodegradation scale could not sufficiently affect C6- C7 cycloalkanes. For branched C6--C7 alkanes, generally, monomethylalkanes are biodegraded earlier than dimethylalkanes and trimethylalkanes, which indicates that branched alkanes are more resistant to biodegradation, with the increase of substituted methyl groups on parent rings. The degree of alkylation is one of the primary controlling factors on the biodegradation of C6-Cv LHs. There is a particular case: although 2,2,3-trimethylbutane has a rela- tive higher alkylation degree, 2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane. 2,2- Dimethylpentane is the most resistant to biodegradation in branched C6-C7 alkanes. Furthermore, the 2-methylpen- tane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation, which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain iso- mers. The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation. With increasing biodegradation, Mango's LH parameters K1 values decrease and K2 values increase, the values of n-heptane and isoheptane decrease, and the indices of methylcyclohexane and cyclohexane increase. LH parameters should be applied cautiously for the biodegraded oils. Because biodegraded samples belong to slight or minor biodegraded oils, the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the "Biodegraded" zone. When the heptane value is 0-21 and the isoheptane value is 0-2.6, the crude oil in Dawanqi Oilfield is defined as the "Biodegraded" zone展开更多
Pt-(Sn,Re)/HZSM5-HMS catalysts were evaluated for n-heptane isomerization at 200–350 ℃.To characterize the catalyst,X-ray diffraction,X-ray fluorescene,Fourier transform infrared spectroscopy,ultraviolet-visible d...Pt-(Sn,Re)/HZSM5-HMS catalysts were evaluated for n-heptane isomerization at 200–350 ℃.To characterize the catalyst,X-ray diffraction,X-ray fluorescene,Fourier transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,temperature-programmed reduction of H2,temperature-programmed desorption of NH3,infrared spectroscopy of adsorbed pyridine,H2 chemisorption,nitrogen adsorption-desorption,scanning electron microscopy and thermogravimetric analysis were performed.Kinetics of n-C7 isomerization were investigated under various hydrogen and n-C7 pressures,and the effects of reaction conditions on catalytic performance were studied.The results showed that bi-and trimetallic catalysts exhibit better performance than monometallic catalysts for this reaction.For example,a maximum i-C7 selectivity( 〉74%) and multibranched isomer selectivity(40%) were observed for Pt-Sn/HZSM5-HMS at 200 ℃.展开更多
A series of Pt catalysts supported on the Hβ-zeolite that is ion-exchanged with the rare earth metal ions of Ce(III) and La(III),are prepared by impregnation,characterized by inductively coupled plasma (ICP),X-...A series of Pt catalysts supported on the Hβ-zeolite that is ion-exchanged with the rare earth metal ions of Ce(III) and La(III),are prepared by impregnation,characterized by inductively coupled plasma (ICP),X-ray diffraction (XRD),BET,temperature-programmed desorption of ammonia (NH3-TPD),temperature-programmed reduction of hydrogen (H2-TPR) and H2-chemisorption techniques,and evaluated in the hydroisomerization of n-heptane with an atmospheric fixed-bed reactor.The reaction temperature,time on stream,space velocity,and the ratio of H2/n-heptane are changed to get the optimal conditions.The Ce(III) and La(III)-exchanged Hβ-zeolites exhibit higher selectivity for isomerized products than the neat Hβ-zeolite.Moreover,the Ce(III)-exchanged catalysts give higher conversions of n-heptane,whereas the La(III)-exchanged ones do not show any improvement in con-version.Under optimal conditions,the catalyst with 0.4% (by mass) Pt and 0.5% (by mass) Ce loading presents very high selectivity of isomerized products of 95.1% coupled with high n-heptane conversion of 68.7%.Effects of the ion-exchange of Ce(III) and La(III) on the catalytic performance are discussed in relation with the physico-chemical properties of catalysts.展开更多
Phospbomolybdate (PMo) with varying Mo loadings ranging from 5-30 wt% on alumina were prepared by incipient wetness impregnation method. 0.5 wt% of Pt was further loaded in order to prepare the bifunctional (metal-...Phospbomolybdate (PMo) with varying Mo loadings ranging from 5-30 wt% on alumina were prepared by incipient wetness impregnation method. 0.5 wt% of Pt was further loaded in order to prepare the bifunctional (metal-acid) Pt-PMo/Al2O3 catalysts. Thus prepared catalysts showed very high catalytic activities for n-heptane hydroisomerization compared with Pt impregnated MoO3 catalysts supported either on Al2O3 or on AIPO4. The conversion of n-heptane increased with Mo loading up to 20 wt% and slightly decreased with further Mo loading. However, the selectivity towards isomers showed an increasing trend up to 30 wt% of Mo in the catalyst. A relationship between catalytic activity and acidic strength was established in the present study.展开更多
Ignition delay times of butanol isomers/n-heptane mixture were measured using a rapid compression machine at compressed pressures of 15,20 and 30 bar,in the compressed temperature range of 650–830 K and equivalence r...Ignition delay times of butanol isomers/n-heptane mixture were measured using a rapid compression machine at compressed pressures of 15,20 and 30 bar,in the compressed temperature range of 650–830 K and equivalence ratio of 1.0.Sensitivity analysis and reaction fluxes analysis were performed using a detailed mechanism of blend fuels so as to evaluate the impact of n-heptane addition and temperature variation on the ignition and combustion process.Over the experimental conditions in this study,the blend fuels displays apparent low and high temperature reactions and a negative-temperature-coefficient(NTC)behavior.With increasing butanol isomers mole fraction in the mixtures,the ignition delay times increase.It is worth noting that the suppression to n-heptane ignition from tert-butanol is very limited.The ignition delay time of 40/60 tert-butanol/n-heptane mixture is smaller than other three kinds of blends.With the increasing of tert-butanol mole fraction,the increasing range of its ignition delay time is very large.Moreover,compressed pressure has a limited effect on the ignition of blend mixture at low temperature but certain influence at medium temperature arrange.Tert-butanol/n-heptane mixture is not sensitive to the pressure.The chemical analysis indicates that butanol isomers also present the NTC behavior because of the low temperature reactivity radicals pool produced by n-heptane.Reaction fluxes analysis shows that the n-heptane addition has little impact on the reaction path.Sensitivity analysis shows that for the pure n-butanol,2-butanol and iso-butanol fuel,H-abstraction from the?-carbon plays the dominant role in the reactions having the inhibiting effect on the low-temperature branching,while the H-abstraction from the?-carbon can promote the ignition;for tert-butanol/n-heptane mixtures,reaction R16.H2O2(+M)<=>OH+OH(+M)plays the leading role.For n-butanol/n-heptane,iso-butanol/n-heptane mixtures,the major promoting reactions include some H-abstraction from n-heptane and OH branching reactions,the influence of H-abstraction from?-carbon is weaken;For 2-butanol/n-heptane,tert-butanol/n-heptane mixtures,R16 plays an absolutely dominant role,while the major inhibiting reactions add some elementary reactions of small radicals.展开更多
文摘The analyses of light hydrocarbons in oils from the Tarim Basin show that the Man-go’s parameter K is about unity except those oils trapped in the eastern part of the Tazhong (Central Tarim) Fault Uplift. The regular variance of K may indicates the accumulation and admixture of the oil populations in the eastern part of the Tazhong Fault Uplift.
基金financially supported by the National Natural Science Foundation of China (Grant No.41272158 and 41172136)
文摘Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much infor- mation regarding the genetic origin and alteration of crude oils. But secondary alterations--especially biodegrada- tion--have a significant effect on the composition of LHs in crude oils. Because most of the LHs affected in oils underwent only slight biodegradation (rank 1 on the biodegradation scale), the variation of LHs can be used to describe more the refined features of biodegradation. Here, 23 crude oils from the Dawanqi Oilfield in the Tarim Basin, NW China, eleven of which have been biodegraded to different extents, were analyzed in order to investigate the effect of slight to minor biodegradation on C6--C7 LHs. The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes, followed by branched alkanes. In slight and minor biodegraded oils, such biodegradation scale could not sufficiently affect C6- C7 cycloalkanes. For branched C6--C7 alkanes, generally, monomethylalkanes are biodegraded earlier than dimethylalkanes and trimethylalkanes, which indicates that branched alkanes are more resistant to biodegradation, with the increase of substituted methyl groups on parent rings. The degree of alkylation is one of the primary controlling factors on the biodegradation of C6-Cv LHs. There is a particular case: although 2,2,3-trimethylbutane has a rela- tive higher alkylation degree, 2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane. 2,2- Dimethylpentane is the most resistant to biodegradation in branched C6-C7 alkanes. Furthermore, the 2-methylpen- tane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation, which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain iso- mers. The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation. With increasing biodegradation, Mango's LH parameters K1 values decrease and K2 values increase, the values of n-heptane and isoheptane decrease, and the indices of methylcyclohexane and cyclohexane increase. LH parameters should be applied cautiously for the biodegraded oils. Because biodegraded samples belong to slight or minor biodegraded oils, the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the "Biodegraded" zone. When the heptane value is 0-21 and the isoheptane value is 0-2.6, the crude oil in Dawanqi Oilfield is defined as the "Biodegraded" zone
文摘Pt-(Sn,Re)/HZSM5-HMS catalysts were evaluated for n-heptane isomerization at 200–350 ℃.To characterize the catalyst,X-ray diffraction,X-ray fluorescene,Fourier transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,temperature-programmed reduction of H2,temperature-programmed desorption of NH3,infrared spectroscopy of adsorbed pyridine,H2 chemisorption,nitrogen adsorption-desorption,scanning electron microscopy and thermogravimetric analysis were performed.Kinetics of n-C7 isomerization were investigated under various hydrogen and n-C7 pressures,and the effects of reaction conditions on catalytic performance were studied.The results showed that bi-and trimetallic catalysts exhibit better performance than monometallic catalysts for this reaction.For example,a maximum i-C7 selectivity( 〉74%) and multibranched isomer selectivity(40%) were observed for Pt-Sn/HZSM5-HMS at 200 ℃.
基金Supported by the Jiangsu Provincial Key Natural Science Foundation for Universities(06KJA53012) the National Natural Science Foundation of China(20476046 20976084)
文摘A series of Pt catalysts supported on the Hβ-zeolite that is ion-exchanged with the rare earth metal ions of Ce(III) and La(III),are prepared by impregnation,characterized by inductively coupled plasma (ICP),X-ray diffraction (XRD),BET,temperature-programmed desorption of ammonia (NH3-TPD),temperature-programmed reduction of hydrogen (H2-TPR) and H2-chemisorption techniques,and evaluated in the hydroisomerization of n-heptane with an atmospheric fixed-bed reactor.The reaction temperature,time on stream,space velocity,and the ratio of H2/n-heptane are changed to get the optimal conditions.The Ce(III) and La(III)-exchanged Hβ-zeolites exhibit higher selectivity for isomerized products than the neat Hβ-zeolite.Moreover,the Ce(III)-exchanged catalysts give higher conversions of n-heptane,whereas the La(III)-exchanged ones do not show any improvement in con-version.Under optimal conditions,the catalyst with 0.4% (by mass) Pt and 0.5% (by mass) Ce loading presents very high selectivity of isomerized products of 95.1% coupled with high n-heptane conversion of 68.7%.Effects of the ion-exchange of Ce(III) and La(III) on the catalytic performance are discussed in relation with the physico-chemical properties of catalysts.
文摘Phospbomolybdate (PMo) with varying Mo loadings ranging from 5-30 wt% on alumina were prepared by incipient wetness impregnation method. 0.5 wt% of Pt was further loaded in order to prepare the bifunctional (metal-acid) Pt-PMo/Al2O3 catalysts. Thus prepared catalysts showed very high catalytic activities for n-heptane hydroisomerization compared with Pt impregnated MoO3 catalysts supported either on Al2O3 or on AIPO4. The conversion of n-heptane increased with Mo loading up to 20 wt% and slightly decreased with further Mo loading. However, the selectivity towards isomers showed an increasing trend up to 30 wt% of Mo in the catalyst. A relationship between catalytic activity and acidic strength was established in the present study.
基金supported by the National Natural Science Foundation of China(Grant No.2013CB228405)
文摘Ignition delay times of butanol isomers/n-heptane mixture were measured using a rapid compression machine at compressed pressures of 15,20 and 30 bar,in the compressed temperature range of 650–830 K and equivalence ratio of 1.0.Sensitivity analysis and reaction fluxes analysis were performed using a detailed mechanism of blend fuels so as to evaluate the impact of n-heptane addition and temperature variation on the ignition and combustion process.Over the experimental conditions in this study,the blend fuels displays apparent low and high temperature reactions and a negative-temperature-coefficient(NTC)behavior.With increasing butanol isomers mole fraction in the mixtures,the ignition delay times increase.It is worth noting that the suppression to n-heptane ignition from tert-butanol is very limited.The ignition delay time of 40/60 tert-butanol/n-heptane mixture is smaller than other three kinds of blends.With the increasing of tert-butanol mole fraction,the increasing range of its ignition delay time is very large.Moreover,compressed pressure has a limited effect on the ignition of blend mixture at low temperature but certain influence at medium temperature arrange.Tert-butanol/n-heptane mixture is not sensitive to the pressure.The chemical analysis indicates that butanol isomers also present the NTC behavior because of the low temperature reactivity radicals pool produced by n-heptane.Reaction fluxes analysis shows that the n-heptane addition has little impact on the reaction path.Sensitivity analysis shows that for the pure n-butanol,2-butanol and iso-butanol fuel,H-abstraction from the?-carbon plays the dominant role in the reactions having the inhibiting effect on the low-temperature branching,while the H-abstraction from the?-carbon can promote the ignition;for tert-butanol/n-heptane mixtures,reaction R16.H2O2(+M)<=>OH+OH(+M)plays the leading role.For n-butanol/n-heptane,iso-butanol/n-heptane mixtures,the major promoting reactions include some H-abstraction from n-heptane and OH branching reactions,the influence of H-abstraction from?-carbon is weaken;For 2-butanol/n-heptane,tert-butanol/n-heptane mixtures,R16 plays an absolutely dominant role,while the major inhibiting reactions add some elementary reactions of small radicals.