In this paper numerical analysis of underground structures, taking account the transverse isotropy system of rocks, was done using CAST 3M code by varying the shape of excavation and the coefficient of earth pressure ...In this paper numerical analysis of underground structures, taking account the transverse isotropy system of rocks, was done using CAST 3M code by varying the shape of excavation and the coefficient of earth pressure k. Numerical results reveal that the anisotropy behavior, the shape of hole and the coefficient of earth pressure k have significant influence to the mining induced stress field and rock deformations which directly control the stability of underground excavation design. The magnitude of horizontal stress obtained for the horse shoe shape excavation(25.2 MPa for k = 1; 52.7 MPa for k = 2)is lower than the magnitude obtained for circular hole(26.4 MPa for k = 1; 59.5 MPa for k = 2).Therefore, we have concluded that the horse shoe shape offers the best stability and the best design for engineer. The anisotropy system presented by rock mass can also influence the redistribution of stresses around hole opened. Numerical results have revealed that the magnitude of redistribution of horizontal stresses obtained for transverse isotropic rock(12.1 MPa for k = 0.5; 25.2 MPa for k = 1 and52.7 MPa for k = 2) is less than those obtained in the case of isotropic rock(27.6 MPa for k = 1;48.6 MPa for k = 2 and 90.81 MPa for k = 2). The more the rock has the anisotropic behavior, the more the mass of rock around the tunnel is stable.展开更多
The phase-field crystal(PFC) model is employed to study the shape transition of strained islands in heteroepitaxy on vicinal substrates.The influences of both substrate vicinal angles β and the lattice mismatch ξ ar...The phase-field crystal(PFC) model is employed to study the shape transition of strained islands in heteroepitaxy on vicinal substrates.The influences of both substrate vicinal angles β and the lattice mismatch ξ are discussed.The increase of substrate vicinal angles is found to be capable of significantly changing the surface nanostructures of epitaxial films.The surface morphology of films undergoes a series of transitions that include Stranski-Krastonov(SK) islands,the couple growth of islands and the step flow as well as the formation of step bunching.In addition,the larger ξ indicates an increased strained island density after coarsening,and results in the incoherent growth of strained islands with the creation of misfit dislocations.Coarsening,coalescence and faceting of strained islands are also observed.Some facets in the shape transition of strained islands are found to be stable and can be determined by β and crystal symmetry of the film.展开更多
Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best mode...Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, p, the deceleration parameter, q, the equations of state parameter, wD, for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density. Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics (GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the OSLT of thermodynamics in a fractal cosmology.展开更多
The quantum teleportation with the entangled thermai state is investigated based on the completely anisotropie Heisenberg chain in the presence of the externally inhomogeneous magnetic field. The effects of the anisot...The quantum teleportation with the entangled thermai state is investigated based on the completely anisotropie Heisenberg chain in the presence of the externally inhomogeneous magnetic field. The effects of the anisotropy and magnetic field for the quantum fidelity are studied in detail The zero temperature limit and the features of the nonzero temperature for this nonclassical fdelity are obtained. We find that the quantum teleportation demands more stringent conditions than the therma/ entanglement of the resource by investigating the threshold temperature of the thermal concurrence and the criticai temperature of the maximai teleportation fidelity. The useful quantum teleportation should avoid the point of the phase transition of the system and the anisotropy of the chain and the external magnetic field can control the applicability of the resource in the quantum teleportation.展开更多
文摘In this paper numerical analysis of underground structures, taking account the transverse isotropy system of rocks, was done using CAST 3M code by varying the shape of excavation and the coefficient of earth pressure k. Numerical results reveal that the anisotropy behavior, the shape of hole and the coefficient of earth pressure k have significant influence to the mining induced stress field and rock deformations which directly control the stability of underground excavation design. The magnitude of horizontal stress obtained for the horse shoe shape excavation(25.2 MPa for k = 1; 52.7 MPa for k = 2)is lower than the magnitude obtained for circular hole(26.4 MPa for k = 1; 59.5 MPa for k = 2).Therefore, we have concluded that the horse shoe shape offers the best stability and the best design for engineer. The anisotropy system presented by rock mass can also influence the redistribution of stresses around hole opened. Numerical results have revealed that the magnitude of redistribution of horizontal stresses obtained for transverse isotropic rock(12.1 MPa for k = 0.5; 25.2 MPa for k = 1 and52.7 MPa for k = 2) is less than those obtained in the case of isotropic rock(27.6 MPa for k = 1;48.6 MPa for k = 2 and 90.81 MPa for k = 2). The more the rock has the anisotropic behavior, the more the mass of rock around the tunnel is stable.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51075335,51174168,10902086 and 50875217)the Northwestern Polytechnical University Foundation for Fundamental Research (Grant Nos. 201109 and NPU-FFR-JC201005)
文摘The phase-field crystal(PFC) model is employed to study the shape transition of strained islands in heteroepitaxy on vicinal substrates.The influences of both substrate vicinal angles β and the lattice mismatch ξ are discussed.The increase of substrate vicinal angles is found to be capable of significantly changing the surface nanostructures of epitaxial films.The surface morphology of films undergoes a series of transitions that include Stranski-Krastonov(SK) islands,the couple growth of islands and the step flow as well as the formation of step bunching.In addition,the larger ξ indicates an increased strained island density after coarsening,and results in the incoherent growth of strained islands with the creation of misfit dislocations.Coarsening,coalescence and faceting of strained islands are also observed.Some facets in the shape transition of strained islands are found to be stable and can be determined by β and crystal symmetry of the film.
文摘Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, p, the deceleration parameter, q, the equations of state parameter, wD, for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density. Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics (GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the OSLT of thermodynamics in a fractal cosmology.
基金Supported by the Special Research Fund Provided by the Chonnam National University
文摘The quantum teleportation with the entangled thermai state is investigated based on the completely anisotropie Heisenberg chain in the presence of the externally inhomogeneous magnetic field. The effects of the anisotropy and magnetic field for the quantum fidelity are studied in detail The zero temperature limit and the features of the nonzero temperature for this nonclassical fdelity are obtained. We find that the quantum teleportation demands more stringent conditions than the therma/ entanglement of the resource by investigating the threshold temperature of the thermal concurrence and the criticai temperature of the maximai teleportation fidelity. The useful quantum teleportation should avoid the point of the phase transition of the system and the anisotropy of the chain and the external magnetic field can control the applicability of the resource in the quantum teleportation.