Conjugated linoleic acid (CLA) is a kind of fatty acid with physiological activities and potential application prospect. A synthesis method of conjugated linoleic acid and a purification technology were studied. CLA w...Conjugated linoleic acid (CLA) is a kind of fatty acid with physiological activities and potential application prospect. A synthesis method of conjugated linoleic acid and a purification technology were studied. CLA was prepared and purified by urea-complexation and conjugation using safflower oil as raw material. The purity of CLA and total recovery of the product was more than 95% and 48%, respectively. The main isomers produced in alkali-catalyzed conjugation were identified by gas chromatography (GC) linked to mass spectrometry (MS) and Fourier transform infrared spectroscopy (FTIR). The total amount of the two main isomers (9cis, 11trons-and 10trans, 12cis-CLA) determined by GC was more than 90% of the product.展开更多
Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high- throughput (HT) heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst ...Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high- throughput (HT) heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass-spectrometry, and gas- chromatography techniques. Of these, rapid-scanning Fourier-transform infrared (FTIR) imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16-channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/AI203 and cobalt oxide nanoparticles synthesized with different reducer-reductant molar ratios, surfactant types, metal and surfactant concentrations, synthesis temperatures, and ramp rates.展开更多
In this work, the authors present a study of dye absorption in TiO2 doped with CNTs (carbon nanotubes). Absorption decreases exponentially with the increase of CNTs in the film, while morphological characterization,...In this work, the authors present a study of dye absorption in TiO2 doped with CNTs (carbon nanotubes). Absorption decreases exponentially with the increase of CNTs in the film, while morphological characterization, conducted by SEM (scanning electron microscope) and TEM (transmission electron microscope) microscopes, suggests that this behavior is strongly related to morphological structure of grown films. For CNTs amounts greater than 1%, the authors observe the formation of CNTs clusters randomly distribute on TiO2 bulk, which strongly reduces the film porosity quenching the dye absorption. Comparison with optical properties of CNT/TiO2 filmstudied in the previous work, suggest that the best level of doping is with 0.5% of CNTs. FTIR (Fourier transform infrared spectroscopy) measurements conducted on a series of pristine and doped samples clearly indicate the absence of change in allotropic species of TiO2, while AFM (atomic force microscope) analysis indicates that the sample roughness strongly changes with doping, preventing the dye adsorption. Finally, measurements of cell efficiency indicate an increase of 5% in cells with 0.5% of CNT doping and a decrease for greater values.展开更多
The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of Si O2/Al2O3 was synthesized throu...The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of Si O2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The product was characterized by X-ray diffraction, scanning electron microscopy(SEM), nitrogen adsorption,transform electron microscopy(TEM) and in situ Fourier transform infrared(FTIR) spectroscopy. The influence of nano-zeolite water content and desorbent type on the selectivity of para-xylene toward other C8 aromatic isomers was studied. The optimization of adsorption process was also investigated under variable operation conditions. The isotherm for each isomer of C8 aromatics and the desorbents possess the adsorption characteristics of Langmuir type. The selectivity factor of para-xylene relative to each of meta-xylene, ortho-xylene and ethylbenzene under the optimum conditions obtained to be 5.36, 2.43 and 3.22, in the order given.展开更多
We present a scheme to simulate SH-wave propagation in a whole-Earth model with arbitrary lateral heterogeneities employing the Fourier pseudospectral method. Wave equations are defined in two-dimensional cylindrical ...We present a scheme to simulate SH-wave propagation in a whole-Earth model with arbitrary lateral heterogeneities employing the Fourier pseudospectral method. Wave equations are defined in two-dimensional cylindrical coordinates and the model is taken through a great circle of the Earth. Spatial derivatives in the wave equations are calculated in the wavenumber domain by multiplication, and the transformation between spatial and wavenumber domains is performed via fast Fourier transformation. Because of the high accuracy and high speed of the Fourier pseudospectral method, the scheme enables us to calculate a short-wavelength global SH-wavefield with accurate waveforms and arrival times for models with heterogeneities that can be approximated as azimuthally symmetric. Comparing with two-dimensional simulation methods based on an axisymmetric model, implementing the seismic source in the present scheme is more convenient. We calculated the global SH-wavefield for the preliminary reference Earth model to identify the generation, reflection and refraction of various seismic phases propagating in the Earth. Applications to a heterogeneous global model with low-velocity perturbation above the core-mantle boundary were conducted to analyze the effect of lateral heterogeneity on global SH-wave propagation.展开更多
文摘Conjugated linoleic acid (CLA) is a kind of fatty acid with physiological activities and potential application prospect. A synthesis method of conjugated linoleic acid and a purification technology were studied. CLA was prepared and purified by urea-complexation and conjugation using safflower oil as raw material. The purity of CLA and total recovery of the product was more than 95% and 48%, respectively. The main isomers produced in alkali-catalyzed conjugation were identified by gas chromatography (GC) linked to mass spectrometry (MS) and Fourier transform infrared spectroscopy (FTIR). The total amount of the two main isomers (9cis, 11trons-and 10trans, 12cis-CLA) determined by GC was more than 90% of the product.
基金the South Carolina Smart State Center for Strategic Approaches to the Generation of Electricity (SAGE) for funding
文摘Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high- throughput (HT) heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass-spectrometry, and gas- chromatography techniques. Of these, rapid-scanning Fourier-transform infrared (FTIR) imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16-channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/AI203 and cobalt oxide nanoparticles synthesized with different reducer-reductant molar ratios, surfactant types, metal and surfactant concentrations, synthesis temperatures, and ramp rates.
文摘In this work, the authors present a study of dye absorption in TiO2 doped with CNTs (carbon nanotubes). Absorption decreases exponentially with the increase of CNTs in the film, while morphological characterization, conducted by SEM (scanning electron microscope) and TEM (transmission electron microscope) microscopes, suggests that this behavior is strongly related to morphological structure of grown films. For CNTs amounts greater than 1%, the authors observe the formation of CNTs clusters randomly distribute on TiO2 bulk, which strongly reduces the film porosity quenching the dye absorption. Comparison with optical properties of CNT/TiO2 filmstudied in the previous work, suggest that the best level of doping is with 0.5% of CNTs. FTIR (Fourier transform infrared spectroscopy) measurements conducted on a series of pristine and doped samples clearly indicate the absence of change in allotropic species of TiO2, while AFM (atomic force microscope) analysis indicates that the sample roughness strongly changes with doping, preventing the dye adsorption. Finally, measurements of cell efficiency indicate an increase of 5% in cells with 0.5% of CNT doping and a decrease for greater values.
文摘The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of Si O2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The product was characterized by X-ray diffraction, scanning electron microscopy(SEM), nitrogen adsorption,transform electron microscopy(TEM) and in situ Fourier transform infrared(FTIR) spectroscopy. The influence of nano-zeolite water content and desorbent type on the selectivity of para-xylene toward other C8 aromatic isomers was studied. The optimization of adsorption process was also investigated under variable operation conditions. The isotherm for each isomer of C8 aromatics and the desorbents possess the adsorption characteristics of Langmuir type. The selectivity factor of para-xylene relative to each of meta-xylene, ortho-xylene and ethylbenzene under the optimum conditions obtained to be 5.36, 2.43 and 3.22, in the order given.
基金supported by National Natural Science Foundation of China (Grant Nos. 40874020, 40474012 and 40821062)National R&D Special Fund for Public Welfare Industry (Grant No. 20070804)
文摘We present a scheme to simulate SH-wave propagation in a whole-Earth model with arbitrary lateral heterogeneities employing the Fourier pseudospectral method. Wave equations are defined in two-dimensional cylindrical coordinates and the model is taken through a great circle of the Earth. Spatial derivatives in the wave equations are calculated in the wavenumber domain by multiplication, and the transformation between spatial and wavenumber domains is performed via fast Fourier transformation. Because of the high accuracy and high speed of the Fourier pseudospectral method, the scheme enables us to calculate a short-wavelength global SH-wavefield with accurate waveforms and arrival times for models with heterogeneities that can be approximated as azimuthally symmetric. Comparing with two-dimensional simulation methods based on an axisymmetric model, implementing the seismic source in the present scheme is more convenient. We calculated the global SH-wavefield for the preliminary reference Earth model to identify the generation, reflection and refraction of various seismic phases propagating in the Earth. Applications to a heterogeneous global model with low-velocity perturbation above the core-mantle boundary were conducted to analyze the effect of lateral heterogeneity on global SH-wave propagation.