期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
异构复杂信息网络敏感数据流动态挖掘 被引量:17
1
作者 熊菊霞 吴尽昭 《计算机工程与科学》 CSCD 北大核心 2020年第4期628-633,共6页
针对异构复杂信息网络中存在高维冗余的敏感数据流,可挖掘数据特征形成概率较低,导致需要多次挖掘、挖掘内存占用高、挖掘精度低、时间长的问题,提出基于最大类间散度的网络敏感数据流动态挖掘方法。将敏感数据的差异最大化间隔作为分... 针对异构复杂信息网络中存在高维冗余的敏感数据流,可挖掘数据特征形成概率较低,导致需要多次挖掘、挖掘内存占用高、挖掘精度低、时间长的问题,提出基于最大类间散度的网络敏感数据流动态挖掘方法。将敏感数据的差异最大化间隔作为分类基础,得到网络敏感数据的最大类间散度,在遗传迭代状态下确定最优散度迭代函数,对迭代函数进行挖掘特征优选,得出动态可挖掘特征。对可挖掘特征进行聚类分析,挖掘得到数据隐藏信息模式,并对其进行评价,将合理的信息模式进行知识表示,从而实现异构复杂信息网络敏感数据流动态挖掘。实验结果表明,所提方法可挖掘特征形成概率高达98%,labels标记与实际值较为接近。所提方法挖掘精度高,且运行时间较短、内存占用率低。 展开更多
关键词 异构复杂信息网络 敏感数据流 动态挖掘 散度迭代函数 聚类分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部