针对现有异构网络嵌入方法导致的捕获关系冗余和模糊的问题,提出了一种基于孪生神经网络的深度异构网络嵌入模型。首先,基于面向关系的深度嵌入(Relation-Oriented Deep Embedding,RODE)框架构建了异构网络嵌入模型,以区分同型节点和异...针对现有异构网络嵌入方法导致的捕获关系冗余和模糊的问题,提出了一种基于孪生神经网络的深度异构网络嵌入模型。首先,基于面向关系的深度嵌入(Relation-Oriented Deep Embedding,RODE)框架构建了异构网络嵌入模型,以区分同型节点和异型节点之间的关系;其次,将同型节点与异类节点之间的相似性近似到低维空间,通过构建多任务的孪生神经网络来实现节点之间结构和语义关系的深度嵌入;最后,选取四个数据集执行典型网络挖掘任务,并与其他六种算法进行实验对比分析。实验结果表明,保持相同类型节点之间的相似性有助于提高节点分类效率,且损失函数在提高异构网络嵌入质量方面具有良好的优越性;RODE模型能够有效提高稀疏网络的嵌入质量,且具有良好的稳定性和鲁棒性。展开更多
文摘针对现有异构网络嵌入方法导致的捕获关系冗余和模糊的问题,提出了一种基于孪生神经网络的深度异构网络嵌入模型。首先,基于面向关系的深度嵌入(Relation-Oriented Deep Embedding,RODE)框架构建了异构网络嵌入模型,以区分同型节点和异型节点之间的关系;其次,将同型节点与异类节点之间的相似性近似到低维空间,通过构建多任务的孪生神经网络来实现节点之间结构和语义关系的深度嵌入;最后,选取四个数据集执行典型网络挖掘任务,并与其他六种算法进行实验对比分析。实验结果表明,保持相同类型节点之间的相似性有助于提高节点分类效率,且损失函数在提高异构网络嵌入质量方面具有良好的优越性;RODE模型能够有效提高稀疏网络的嵌入质量,且具有良好的稳定性和鲁棒性。