Heterogeneous Fenton reagent, as a strong oxidizer, has been used widely in the treatment ofwastewater. We prepared Fe2O3/γ-Al2O3 catalyst by impregnation method and characterized it by powder X-ray diffraction (XRD...Heterogeneous Fenton reagent, as a strong oxidizer, has been used widely in the treatment ofwastewater. We prepared Fe2O3/γ-Al2O3 catalyst by impregnation method and characterized it by powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM). Test results show that Fe203 crystal was compounded on the γ-Al2O3 carder. We tested and optimized Fe203/γ-Al2O3 /H2O2 and Fe2O3/γ-Al2O3 /H2O2/UV processes to remediate organic material of phenol, using phenol solution with an in. itial concentration of 250 mg/L as a representative of phenolic industrial Wastewater. The preparation conditions were optimized based on performance of Fe2Oa/γ-Al2O3 catalyst and the processes to degrade phenol in aqueous environments. The experimental results showed that the phenol removal perfomance with Fe2O3/γ-Al2O3 /H2O2/UV was more complete than with Fe2O3/γ-Al2O3 /H2O2 and degradation rate of phenol reached 89.4% and 94.7% respectively after reaction for2 h.展开更多
基金Funded by the Natural Science Foundation of the Education Committee of Heilongjiang Province (No. 12511371)
文摘Heterogeneous Fenton reagent, as a strong oxidizer, has been used widely in the treatment ofwastewater. We prepared Fe2O3/γ-Al2O3 catalyst by impregnation method and characterized it by powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM). Test results show that Fe203 crystal was compounded on the γ-Al2O3 carder. We tested and optimized Fe203/γ-Al2O3 /H2O2 and Fe2O3/γ-Al2O3 /H2O2/UV processes to remediate organic material of phenol, using phenol solution with an in. itial concentration of 250 mg/L as a representative of phenolic industrial Wastewater. The preparation conditions were optimized based on performance of Fe2Oa/γ-Al2O3 catalyst and the processes to degrade phenol in aqueous environments. The experimental results showed that the phenol removal perfomance with Fe2O3/γ-Al2O3 /H2O2/UV was more complete than with Fe2O3/γ-Al2O3 /H2O2 and degradation rate of phenol reached 89.4% and 94.7% respectively after reaction for2 h.