Since more and more mobile applications are based on the proliferation of social information, the study of Mobile Social Networks (MSNs) combines social sciences and wireless communications. Operating wireless netwo...Since more and more mobile applications are based on the proliferation of social information, the study of Mobile Social Networks (MSNs) combines social sciences and wireless communications. Operating wireless networks more efficiently by exploiting social relationships between MSN users is an appealing but challenging option for network operators. An MSN-aided content dissemination technique is presented as a potential extension of conventional cellular wireless networks in order to satisfy growing data traffic. By allowing the MSN users to create a self-organized ad hoc network for spontaneously disseminating contents, the network operator may be able to reduce the operational costs and simultaneously achieve an improved network performance. In this paper, we first summarize the basic features of the MSN architecture, followed by a survey of the factors which may affect MSN-aided content dissemination. Using a case study, we demonstrate that one can save resources of the Base Station (BS) while substantially lowering content dissemination delay. Finally, other potential applications of MSN-aided content dissemination are introduced, and a range of lustre challenges are summarized.展开更多
Potential behavior prediction involves understanding the latent human behavior of specific groups,and can assist organizations in making strategic decisions.Progress in information technology has made it possible to a...Potential behavior prediction involves understanding the latent human behavior of specific groups,and can assist organizations in making strategic decisions.Progress in information technology has made it possible to acquire more and more data about human behavior.In this paper,we examine behavior data obtained in realworld scenarios as an information network composed of two types of objects(humans and actions)associated with various attributes and three types of relationships(human-human,human-action,and action-action),which we call the heterogeneous behavior network(HBN).To exploit the abundance and heterogeneity of the HBN,we propose a novel network embedding method,human-action-attribute-aware heterogeneous network embedding(a4 HNE),which jointly considers structural proximity,attribute resemblance,and heterogeneity fusion.Experiments on two real-world datasets show that this approach outperforms other similar methods on various heterogeneous information network mining tasks for potential behavior prediction.展开更多
基金support of the RC-UK’s India-UK Advanced Technology Centre (IU-ATC),that of the EU’s Concerto project, that of the China Scholarship Council (CSC) as well as of the European Research Council’s Advanced Grant
文摘Since more and more mobile applications are based on the proliferation of social information, the study of Mobile Social Networks (MSNs) combines social sciences and wireless communications. Operating wireless networks more efficiently by exploiting social relationships between MSN users is an appealing but challenging option for network operators. An MSN-aided content dissemination technique is presented as a potential extension of conventional cellular wireless networks in order to satisfy growing data traffic. By allowing the MSN users to create a self-organized ad hoc network for spontaneously disseminating contents, the network operator may be able to reduce the operational costs and simultaneously achieve an improved network performance. In this paper, we first summarize the basic features of the MSN architecture, followed by a survey of the factors which may affect MSN-aided content dissemination. Using a case study, we demonstrate that one can save resources of the Base Station (BS) while substantially lowering content dissemination delay. Finally, other potential applications of MSN-aided content dissemination are introduced, and a range of lustre challenges are summarized.
基金Project supported by the National Natural Science Foundation of China(Nos.U1509206,61625107,and U1611461)the Key Program of Zhejiang Province,China(No.2015C01027).
文摘Potential behavior prediction involves understanding the latent human behavior of specific groups,and can assist organizations in making strategic decisions.Progress in information technology has made it possible to acquire more and more data about human behavior.In this paper,we examine behavior data obtained in realworld scenarios as an information network composed of two types of objects(humans and actions)associated with various attributes and three types of relationships(human-human,human-action,and action-action),which we call the heterogeneous behavior network(HBN).To exploit the abundance and heterogeneity of the HBN,we propose a novel network embedding method,human-action-attribute-aware heterogeneous network embedding(a4 HNE),which jointly considers structural proximity,attribute resemblance,and heterogeneity fusion.Experiments on two real-world datasets show that this approach outperforms other similar methods on various heterogeneous information network mining tasks for potential behavior prediction.