The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility ...The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing.展开更多
The user association and wireless backhaul bandwidth allocation for a two-tier heterogeneous network (HetNet) in the mil- limeter wave (mmWave) band is proposed in this article. The two-tier HetNet is built up wit...The user association and wireless backhaul bandwidth allocation for a two-tier heterogeneous network (HetNet) in the mil- limeter wave (mmWave) band is proposed in this article. The two-tier HetNet is built up with a macro base station (MBS) and several small cell SBSs, where the MBS is assumed to be equipped with large-scale antenna arrays but the SBSs only have single-antenna capa- bility and they rely on the wireless link to the MBS for backhaul. The sum of logarithmic user rate, which is established according to the result of multi-user Multiple Input Mul- tiple Output (MIMO) downlink employing Zero-Force Beamforming (ZFBF), is chosen as the network utility for the objective func- tion. And a distributed optimization algorithm based on primal and dual decomposition is used to jointly optimize the user association variable xj,z and the wireless backhaul band- width factor α. Simulation results reveal that the distributed optimization algorithm jointly optimizing two variables outperforms the con- ventional SINR-based user association strate- gies.展开更多
In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm bas...In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm based on markov process is proposed and discussed in this paper. This algorithm takes into account that the status transformation of available network will affect the quality of service(Qo S) of vehicle terminal's communication service. Firstly, Markov process is used to predict the transformation of wireless network's status after the decision via transition probability. Then the weights of evaluating parameters will be determined by fuzzy logic method. Finally, by comparing the total incomes of each wireless network, including handoff decision incomes, handoff execution incomes and communication service incomes after handoff, the optimal network to handoff will be selected. Simulation results show that: the algorithm proposed, compared to the existing algorithm, is able to receive a higher level of load balancing and effectively improves the average blocking rate, packet loss rate and ping-pang effect.展开更多
Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, del...Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, delay and target data rate in the medium ac-cess control layer, urgent queue length in the network layer, and packet error rate in the transport layer, have been considered. The original problem is non-deterministic polyno-mial time hard, which cannot be solved practi-cally. After the restrictions of upper layers are translated into constraints with physical layer parameters, and the integer restrictions are relaxed, the original problem can be decom- posed into convex optimization subproblems. The optimal solutions of resource block allo-cation and power allocation can be obtained by using the Lagrangian optimization. Simula-tion results show that the proposed scheme is better than both the round robin algorithm and the max-rain one in terms of energy efficiency, throughput and service fairness. The round robin algorithm and the max-min one only focus on the user fairness rather than quality of service fairness. Compared to the round robin scheme (the max-min one), the proposed scheme improves the energy efficiency 58.85% (62.41%), the throughput 19.09% (25.25%), the service fairness 57.69% (35.48%).展开更多
Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wi...Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wireless network subject to diverse Qo E is very difficult, which leads to many new challenges regarding Qo E guarantees in wireless networks. In this paper, we formulate the Qo E guarantees model for cellular wireless networks. Based on the model, we convert the effective capacity maximization problem into the equivalent convex optimization problem. Then, we develop the optimal Qo E-driven power allocation scheme, which can maximize the effective capacity. The obtained simulation results verified our proposed power allocation scheme, showing that the effective capacity can be significantly increased compared with that of traditional Qo E guarantees based schemes.展开更多
In this study,an explicit adaptive traffic allocation scheme for Machine-to-Machine(M2M)service is proposed to achieve optimum distribution in heterogeneous networks.Based on the characteristics of M2M services,the pr...In this study,an explicit adaptive traffic allocation scheme for Machine-to-Machine(M2M)service is proposed to achieve optimum distribution in heterogeneous networks.Based on the characteristics of M2M services,the presented scheme is formulated as a convex optimization problem that maximises the utility of the M2M service,and then determines how to allocate the total rate among the multiple access networks.The analysis and numerical simulations indicate that the proposed scheme makes a significant improvement in performance compared with the traditional schemes.展开更多
基金supported by the National Natural Science Foundation of China (No. 61741102, No. 61471164)China Scholarship Council
文摘The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing.
基金supported by NSFC under Grant (61725101 and 61771036)the ZTE Corporation, State Key Lab of Rail Traffic Control and Safety Project under Grant (RCS2017ZZ004 and RCS2017ZT008)+1 种基金Beijing Natural Science Foundation under Grant L161009supported by the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University, under grant 2015D04
文摘The user association and wireless backhaul bandwidth allocation for a two-tier heterogeneous network (HetNet) in the mil- limeter wave (mmWave) band is proposed in this article. The two-tier HetNet is built up with a macro base station (MBS) and several small cell SBSs, where the MBS is assumed to be equipped with large-scale antenna arrays but the SBSs only have single-antenna capa- bility and they rely on the wireless link to the MBS for backhaul. The sum of logarithmic user rate, which is established according to the result of multi-user Multiple Input Mul- tiple Output (MIMO) downlink employing Zero-Force Beamforming (ZFBF), is chosen as the network utility for the objective func- tion. And a distributed optimization algorithm based on primal and dual decomposition is used to jointly optimize the user association variable xj,z and the wireless backhaul band- width factor α. Simulation results reveal that the distributed optimization algorithm jointly optimizing two variables outperforms the con- ventional SINR-based user association strate- gies.
基金supported in part by the National Natural Science Foundation of China under grant No. 61271259, No. 61301123, No. 61471076Scientific and Technological Research Program of Chongqing Municipal Education Commission of Chongqing of China under Grant No.KJ130536
文摘In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm based on markov process is proposed and discussed in this paper. This algorithm takes into account that the status transformation of available network will affect the quality of service(Qo S) of vehicle terminal's communication service. Firstly, Markov process is used to predict the transformation of wireless network's status after the decision via transition probability. Then the weights of evaluating parameters will be determined by fuzzy logic method. Finally, by comparing the total incomes of each wireless network, including handoff decision incomes, handoff execution incomes and communication service incomes after handoff, the optimal network to handoff will be selected. Simulation results show that: the algorithm proposed, compared to the existing algorithm, is able to receive a higher level of load balancing and effectively improves the average blocking rate, packet loss rate and ping-pang effect.
基金supported in part by the project of National Natural Science Foundation of China under Grant No. 61071075National Science and Technology Major Project of China under Grant No. 2010ZX03003-001-02+1 种基金National Science and Technology Major Project of China under Grant No. 2011ZX03004003the Chinese Ministry of Education in the project of the Fundamental Research Funds for the Central Universities under Grant No.2011YJS216
文摘Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, delay and target data rate in the medium ac-cess control layer, urgent queue length in the network layer, and packet error rate in the transport layer, have been considered. The original problem is non-deterministic polyno-mial time hard, which cannot be solved practi-cally. After the restrictions of upper layers are translated into constraints with physical layer parameters, and the integer restrictions are relaxed, the original problem can be decom- posed into convex optimization subproblems. The optimal solutions of resource block allo-cation and power allocation can be obtained by using the Lagrangian optimization. Simula-tion results show that the proposed scheme is better than both the round robin algorithm and the max-rain one in terms of energy efficiency, throughput and service fairness. The round robin algorithm and the max-min one only focus on the user fairness rather than quality of service fairness. Compared to the round robin scheme (the max-min one), the proposed scheme improves the energy efficiency 58.85% (62.41%), the throughput 19.09% (25.25%), the service fairness 57.69% (35.48%).
基金supported in part by the National Natural Science Foundation of China(Nos.61771368 and 61671347)Young Elite Scientists Sponsorship Program by CAST(2016QNRC001)
文摘Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wireless network subject to diverse Qo E is very difficult, which leads to many new challenges regarding Qo E guarantees in wireless networks. In this paper, we formulate the Qo E guarantees model for cellular wireless networks. Based on the model, we convert the effective capacity maximization problem into the equivalent convex optimization problem. Then, we develop the optimal Qo E-driven power allocation scheme, which can maximize the effective capacity. The obtained simulation results verified our proposed power allocation scheme, showing that the effective capacity can be significantly increased compared with that of traditional Qo E guarantees based schemes.
基金supported by the National Natural Science Foundation of Chinaunder Grant No.60971125the National Science and Technology Major Project of the Ministry of Science and Technology of Chinaunder Grant No.2012ZX03005-010the China Scholarship Council
文摘In this study,an explicit adaptive traffic allocation scheme for Machine-to-Machine(M2M)service is proposed to achieve optimum distribution in heterogeneous networks.Based on the characteristics of M2M services,the presented scheme is formulated as a convex optimization problem that maximises the utility of the M2M service,and then determines how to allocate the total rate among the multiple access networks.The analysis and numerical simulations indicate that the proposed scheme makes a significant improvement in performance compared with the traditional schemes.