In spectrum aggregation(SA), two or more component carriers(CCs) of different bandwidths in different bands can be aggregated to support wider transmission bandwidth. The current resource scheduling schemes for spectr...In spectrum aggregation(SA), two or more component carriers(CCs) of different bandwidths in different bands can be aggregated to support wider transmission bandwidth. The current resource scheduling schemes for spectrum aggregation are not optimal or suitable for CR based heterogeneous networks(Het Nets). Consequently, the authors propose a novel resource scheduling scheme for spectrum aggregation in CR based Het Nets, termed as cognitive radio based resource scheduling(CR-RS) scheme. CR-RS has a three-level structure. Under a dynamic traffic model, an equivalent throughput of the CCs based on the knowledge of primary users(PUs) is given. On this basis, the CR users data transmission time of each CC is equal in CR-RS. The simulation results show that CR-RS has the better performance than the current resource scheduling schemes in the CR based Het Nets. Meanwhile, CR-RS is also effective in other spectrum aggregation systems which are not CR based HetNets.展开更多
The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are over...The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are overlaid with small cells, some traditional problems need rethinking. In this paper, we investigate the delay-addressed association problem in two-tier Het Nets considering different backhaul technologies. Specifically, millimeter wave and fiber links are used to provide high-capacity backhaul for small cells. We first formulate the user association problem to minimize the total delay which depends on the probability of successful transmission, the number of user terminals(UTs), and the number of base stations(BSs). And then two algorithms for active mode and mixed mode are proposed to minimize the network delay. Simulation results show that algorithms based on mutual selection between UTs and BSs have better performance than those based on distance. And algorithms for mixed modes have less delay than those for active mode when the number of BSs is large enough, compared to the number of UTs.展开更多
基金supported by Major National Science and Technology Project(2014ZX03004003-005)Municipal Exceptional Academic Leaders Foundation (2014RFXXJ002)China Postdoctoral Science Foundation (2014M561347)
文摘In spectrum aggregation(SA), two or more component carriers(CCs) of different bandwidths in different bands can be aggregated to support wider transmission bandwidth. The current resource scheduling schemes for spectrum aggregation are not optimal or suitable for CR based heterogeneous networks(Het Nets). Consequently, the authors propose a novel resource scheduling scheme for spectrum aggregation in CR based Het Nets, termed as cognitive radio based resource scheduling(CR-RS) scheme. CR-RS has a three-level structure. Under a dynamic traffic model, an equivalent throughput of the CCs based on the knowledge of primary users(PUs) is given. On this basis, the CR users data transmission time of each CC is equal in CR-RS. The simulation results show that CR-RS has the better performance than the current resource scheduling schemes in the CR based Het Nets. Meanwhile, CR-RS is also effective in other spectrum aggregation systems which are not CR based HetNets.
基金supported by the National Natural Science Foundation of China (NSFC) under Grants 61427801 and 61671251the Natural Science Foundation Program through Jiangsu Province of China under Grant BK20150852+3 种基金the open research fund of National Mobile Communications Research Laboratory, Southeast University under Grant 2017D05China Postdoctoral Science Foundation under Grant 2016M590481Jiangsu Planned Projects for Postdoctoral Research Funds under Grant 1501018Asupported by NSFC under Grants 61531011 and 61625106
文摘The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are overlaid with small cells, some traditional problems need rethinking. In this paper, we investigate the delay-addressed association problem in two-tier Het Nets considering different backhaul technologies. Specifically, millimeter wave and fiber links are used to provide high-capacity backhaul for small cells. We first formulate the user association problem to minimize the total delay which depends on the probability of successful transmission, the number of user terminals(UTs), and the number of base stations(BSs). And then two algorithms for active mode and mixed mode are proposed to minimize the network delay. Simulation results show that algorithms based on mutual selection between UTs and BSs have better performance than those based on distance. And algorithms for mixed modes have less delay than those for active mode when the number of BSs is large enough, compared to the number of UTs.