In order to maximize system energy efficiency(EE) under user quality of service(Qo S) restraints in Long Term Evolution-Advanced(LTE-A) networks,a constrained joint resource optimization allocation scheme is presented...In order to maximize system energy efficiency(EE) under user quality of service(Qo S) restraints in Long Term Evolution-Advanced(LTE-A) networks,a constrained joint resource optimization allocation scheme is presented,which is NP-hard. Hence,we divide it into three sub-problems to reduce computation complexity,i.e.,the resource block(RB) allocation,the power distribution,and the modulation and coding scheme(MCS) assignment for user codewords. Then an enhanced heuristic approach GAPSO is proposed and is adopted in the RB and power allocation respectively to reduce computational complexity further on. Moreover,a novel MCS allocation scheme is put forward,which could make a good balance between the system reliability and availability under different channel conditions. Simulation results show that the proposed GAPSO could achieve better performance in convergence speed and global optimum searching,and that the joint resource allocation scheme could improve energy efficiency effectively under user Qo S requirements.展开更多
In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. A...In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. As the difference of hybrid energy source in stability and economy, thus, this paper focuses on the network with hybrid energy source, and design the utility of each user in the hybrid energy source system from the perspective of stability, economy and environment pollution. A dual power allocation algorithm based on Stackelberg game to maximize the utilities of users and networks is proposed. In addition, an iteration method is proposed which enables all players to reach the Stackelberg equilibrium(SE). Simulation results validate that players can reach the SE and the utilities of users and networks can be maximization, and the green energy can be efficiently used.展开更多
The a+^2+ Ne elastic scattering angular distributions at lower incident energies of Eα= 12.7-31.1 Me V have been analyzed by using the a-folding potential based on the α+^16O structure model of the ^20Ne nucleus....The a+^2+ Ne elastic scattering angular distributions at lower incident energies of Eα= 12.7-31.1 Me V have been analyzed by using the a-folding potential based on the α+^16O structure model of the ^20Ne nucleus. The a-folding potential with a standard Woods-Saxon type imaginary part, can reasonably describe experimental cross sections and the anomalous large angle scattering (ALAS) features. The anomaly of the a+^20Ne scattering system is further confirmed , in the lower incident energy region.展开更多
Heterogeneous molecular catalysts,such as metal phthalocyanines,are efficient electrocatalysts for CO_(2) reduction reaction(CO_(2)RR).However,the rational design and synthesis of a molecular catalyst-based heterostru...Heterogeneous molecular catalysts,such as metal phthalocyanines,are efficient electrocatalysts for CO_(2) reduction reaction(CO_(2)RR).However,the rational design and synthesis of a molecular catalyst-based heterostructure for CO_(2)RR remains challenging.Herein,we developed a crystalline bimetallic phthalocyanine heterostructure electrocatalyst(CoPc/FePc HS),which achieved an excellent CO_(2)-to-CO conversion efficiency(99%)and outstanding long-term stability after 10 h of electrocatalysis.Density functional theory calculations revealed that the enhancement of CO_(2)RR performance could be attributed to the distinct electron transfer pattern between FePc and CoPc.The heterostructural engineering in molecular catalysts would inspire a unique approach for improving CO_(2)RR performance.展开更多
基金supported in part by National Natural Science Foundation of China (No.61372070)Natural Science Basic Research Plan in Shaanxi Province of China (2015JM6324)+2 种基金Ningbo Natural Science Foundation (2015A610117)Hong Kong,Macao and Taiwan Science & Technology Cooperation Program of China (2015DFT10160)the 111 Project (B08038)
文摘In order to maximize system energy efficiency(EE) under user quality of service(Qo S) restraints in Long Term Evolution-Advanced(LTE-A) networks,a constrained joint resource optimization allocation scheme is presented,which is NP-hard. Hence,we divide it into three sub-problems to reduce computation complexity,i.e.,the resource block(RB) allocation,the power distribution,and the modulation and coding scheme(MCS) assignment for user codewords. Then an enhanced heuristic approach GAPSO is proposed and is adopted in the RB and power allocation respectively to reduce computational complexity further on. Moreover,a novel MCS allocation scheme is put forward,which could make a good balance between the system reliability and availability under different channel conditions. Simulation results show that the proposed GAPSO could achieve better performance in convergence speed and global optimum searching,and that the joint resource allocation scheme could improve energy efficiency effectively under user Qo S requirements.
基金supported by the Beijing Natural Science Foundation (4142049)863 project No. 2014AA01A701the Fundamental Research Funds for Central Universities of China No. 2015XS07
文摘In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. As the difference of hybrid energy source in stability and economy, thus, this paper focuses on the network with hybrid energy source, and design the utility of each user in the hybrid energy source system from the perspective of stability, economy and environment pollution. A dual power allocation algorithm based on Stackelberg game to maximize the utilities of users and networks is proposed. In addition, an iteration method is proposed which enables all players to reach the Stackelberg equilibrium(SE). Simulation results validate that players can reach the SE and the utilities of users and networks can be maximization, and the green energy can be efficiently used.
基金Supported by National Natural Science Foundation of China under Grant No.10865002
文摘The a+^2+ Ne elastic scattering angular distributions at lower incident energies of Eα= 12.7-31.1 Me V have been analyzed by using the a-folding potential based on the α+^16O structure model of the ^20Ne nucleus. The a-folding potential with a standard Woods-Saxon type imaginary part, can reasonably describe experimental cross sections and the anomalous large angle scattering (ALAS) features. The anomaly of the a+^20Ne scattering system is further confirmed , in the lower incident energy region.
基金supported by the National Natural Science Foundation of China(22071172,91833306,21875158,51633006,and 51733004).
文摘Heterogeneous molecular catalysts,such as metal phthalocyanines,are efficient electrocatalysts for CO_(2) reduction reaction(CO_(2)RR).However,the rational design and synthesis of a molecular catalyst-based heterostructure for CO_(2)RR remains challenging.Herein,we developed a crystalline bimetallic phthalocyanine heterostructure electrocatalyst(CoPc/FePc HS),which achieved an excellent CO_(2)-to-CO conversion efficiency(99%)and outstanding long-term stability after 10 h of electrocatalysis.Density functional theory calculations revealed that the enhancement of CO_(2)RR performance could be attributed to the distinct electron transfer pattern between FePc and CoPc.The heterostructural engineering in molecular catalysts would inspire a unique approach for improving CO_(2)RR performance.