This study deals with the stagnation point flow of ferrofluid over a flat plate with non-linear slip boundary condition in the presence of homogeneous-heterogeneous reactions.Three kinds of ferroparticles,namely,magne...This study deals with the stagnation point flow of ferrofluid over a flat plate with non-linear slip boundary condition in the presence of homogeneous-heterogeneous reactions.Three kinds of ferroparticles,namely,magnetite(Fe_3O_4),cobalt ferrite(CoFe_2O_4) and manganese zinc ferrite(Mn-ZnFe_2O_4) are taken into account with water and kerosene as conventional base fluids.The developed model of homogeneous-heterogeneous reactions in boundary layer flow with equal and unequal diffusivities for reactant and autocatalysis is considered.The governing partial differential equations are converted into system of non-linear ordinary differential equations by mean of similarity transformations.These ordinary differential equations are integrated numerically using shooting method.The effects of pertinent parameters on velocity and concentration profiles are presented graphically and discussed.We found that in the presence of Fe_3O_4-kerosene and CoFe_2O_4-kerosene,velocity profiles increase for large values of α and β whereas there is a decrement in concentration profiles with increasing values of if and K_s.Furthermore,the comparison between non-magnetic(A1_2O_3) and magnetic Fe_3O_4 nanoparticles is given in tabular form.展开更多
In this paper,we consider a localized problem with free boundary for the heat equation in higher space dimensions and heterogeneous environment.For simplicity,we assume that the environment and solution are radially s...In this paper,we consider a localized problem with free boundary for the heat equation in higher space dimensions and heterogeneous environment.For simplicity,we assume that the environment and solution are radially symmetric.First,by using the contraction mapping theorem,we prove that the local solution exists and is unique.Then,some sufficient conditions are given under which the solution will blow up in finite time.Our results indicate that the blowup occurs if the initial data are sufficiently large.Finally,the long time behavior of the global solution is discussed.It is shown that the global fast solution does exist if the initial data are sufficiently small,while the global slow solution is possible if the initial data are suitably large.展开更多
文摘This study deals with the stagnation point flow of ferrofluid over a flat plate with non-linear slip boundary condition in the presence of homogeneous-heterogeneous reactions.Three kinds of ferroparticles,namely,magnetite(Fe_3O_4),cobalt ferrite(CoFe_2O_4) and manganese zinc ferrite(Mn-ZnFe_2O_4) are taken into account with water and kerosene as conventional base fluids.The developed model of homogeneous-heterogeneous reactions in boundary layer flow with equal and unequal diffusivities for reactant and autocatalysis is considered.The governing partial differential equations are converted into system of non-linear ordinary differential equations by mean of similarity transformations.These ordinary differential equations are integrated numerically using shooting method.The effects of pertinent parameters on velocity and concentration profiles are presented graphically and discussed.We found that in the presence of Fe_3O_4-kerosene and CoFe_2O_4-kerosene,velocity profiles increase for large values of α and β whereas there is a decrement in concentration profiles with increasing values of if and K_s.Furthermore,the comparison between non-magnetic(A1_2O_3) and magnetic Fe_3O_4 nanoparticles is given in tabular form.
基金supported by National Natural Science Foundation of China (Grant Nos.11071209 and 10801115)the PhD Programs Foundation of Ministry of Education of China (Grant No.20113250110005)
文摘In this paper,we consider a localized problem with free boundary for the heat equation in higher space dimensions and heterogeneous environment.For simplicity,we assume that the environment and solution are radially symmetric.First,by using the contraction mapping theorem,we prove that the local solution exists and is unique.Then,some sufficient conditions are given under which the solution will blow up in finite time.Our results indicate that the blowup occurs if the initial data are sufficiently large.Finally,the long time behavior of the global solution is discussed.It is shown that the global fast solution does exist if the initial data are sufficiently small,while the global slow solution is possible if the initial data are suitably large.