期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于长短期记忆-异步优势动作评判的智能车汇入模型 被引量:1
1
作者 吴思凡 杜煜 +2 位作者 徐世杰 杨硕 杜晨 《汽车技术》 CSCD 北大核心 2019年第10期42-47,共6页
针对以往强化学习中智能车汇入车流算法训练时间复杂度高、收敛速度慢的问题,提出基于长短期记忆-异步优势动作评判算法的智能车汇入模型。在异步优势动作评判算法的基础上,结合长短期记忆神经网络,有效地解决训练模型时间和模型收敛的... 针对以往强化学习中智能车汇入车流算法训练时间复杂度高、收敛速度慢的问题,提出基于长短期记忆-异步优势动作评判算法的智能车汇入模型。在异步优势动作评判算法的基础上,结合长短期记忆神经网络,有效地解决训练模型时间和模型收敛的问题。试验结果表明,该算法提高了模型收敛速度与汇入成功率,同时降低了时间复杂度,适合汇入车流场景。 展开更多
关键词 智能车 汇入车流 异步优势动作评判算法 长短期记忆神经网络 时间复杂度 收敛速度
下载PDF
基于Multi-Agent异步深度强化学习的居民住宅能耗在线优化调度研究 被引量:26
2
作者 张虹 申鑫 +2 位作者 穆昊源 刘艾冬 王鹤 《中国电机工程学报》 EI CSCD 北大核心 2020年第1期117-127,共11页
为促进居民用户柔性负荷高效参与需求响应,帮助用户从被动角色转变为主动角色,实现需求侧最大效益。该文在智能电网环境下,根据用电设备的特性,以概率论的角度对家电设备状态进行描述定义,基于异步深度强化学习(asynchronous deep reinf... 为促进居民用户柔性负荷高效参与需求响应,帮助用户从被动角色转变为主动角色,实现需求侧最大效益。该文在智能电网环境下,根据用电设备的特性,以概率论的角度对家电设备状态进行描述定义,基于异步深度强化学习(asynchronous deep reinforcement learning,ADRL)进行家庭能源管理系统调度的在线优化。学习过程采用异步优势演员–评判家(asynchronous advantage actor-critic,A3C)方法,联合用户历史用电设备运行状态的概率分布,通过多智能体利用CPU多线程功能同时执行多个动作的决策。该方法在包括光伏发电、电动汽车和居民住宅电器设备信息的某高维数据库上进行仿真验证。最后通过不同住宅情境下的优化决策效果对比分析可知,所提在线能耗调度策略可用于向电力用户提供实时反馈,以实现用户用电经济性目标。 展开更多
关键词 异步优势演员-评判 需求响应 概率分布 在线优化 多智能体 动作决策
下载PDF
矿山信息物理融合系统多节点智联策略 被引量:4
3
作者 马洋锦 付茂全 +1 位作者 许志 李敬兆 《工矿自动化》 北大核心 2020年第3期38-42,48,共6页
针对当前矿山信息物理融合系统(CPS)的通信节点无法与基于不同无线通信协议的感知节点实现智能连接的问题,在通信节点上集成多种通信模块构成多模态通信节点,提出了一种基于渐进式神经网络的矿山CPS多节点智联策略。采用渐进式神经网络... 针对当前矿山信息物理融合系统(CPS)的通信节点无法与基于不同无线通信协议的感知节点实现智能连接的问题,在通信节点上集成多种通信模块构成多模态通信节点,提出了一种基于渐进式神经网络的矿山CPS多节点智联策略。采用渐进式神经网络控制多模态通信节点准确切换工作模态,实现异构无线通信网络自主建立;利用异步优势动作评价算法对渐进式神经网络进行深度训练,提高渐进式神经网络的收敛速度和训练精度。实验结果表明,该策略实现了多模态通信节点与多类感知节点之间的准确、可靠通信。 展开更多
关键词 智慧矿山 矿山信息物理融合系统 多模态通信节点 渐进式神经网络 异步优势动作评价算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部