期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于异步优势演员-评论家学习的服务功能链资源分配算法 被引量:8
1
作者 唐伦 贺小雨 +3 位作者 王晓 谭颀 胡彦娟 陈前斌 《电子与信息学报》 EI CSCD 北大核心 2021年第6期1733-1741,共9页
考虑网络全局信息难以获悉的实际情况,针对接入网切片场景下用户终端(UE)的移动性和数据包到达的动态性导致的资源分配优化问题,该文提出了一种基于异步优势演员-评论家(A3C)学习的服务功能链(SFC)资源分配算法。首先,该算法建立基于区... 考虑网络全局信息难以获悉的实际情况,针对接入网切片场景下用户终端(UE)的移动性和数据包到达的动态性导致的资源分配优化问题,该文提出了一种基于异步优势演员-评论家(A3C)学习的服务功能链(SFC)资源分配算法。首先,该算法建立基于区块链的资源管理机制,通过区块链技术实现可信地共享并更新网络全局信息,监督并记录SFC资源分配过程。然后,建立UE移动和数据包到达时变情况下的无线资源、计算资源和带宽资源联合分配的时延最小化模型,并进一步将其转化为马尔科夫决策过程(MDP)。最后,在所建立的MDP中采用A3C学习方法,实现资源分配策略的求解。仿真结果表明,该算法能够更加合理高效地利用资源,优化系统时延并保证UE需求。 展开更多
关键词 网络切片 服务功能链资源分配 马尔科夫决策过程 异步优势演员-评论家学习 区块链
下载PDF
基于优势演员-评论家算法的强化自动摘要模型 被引量:7
2
作者 杜嘻嘻 程华 房一泉 《计算机应用》 CSCD 北大核心 2021年第3期699-705,共7页
针对长文本自动摘要任务中抽取式模型摘要较为冗余,而生成式摘要模型时常有关键信息丢失、摘要不准确和生成内容重复等问题,提出一种面向长文本的基于优势演员-评论家算法的强化自动摘要模型(A2C-RLAS)。首先,用基于卷积神经网络(CNN)... 针对长文本自动摘要任务中抽取式模型摘要较为冗余,而生成式摘要模型时常有关键信息丢失、摘要不准确和生成内容重复等问题,提出一种面向长文本的基于优势演员-评论家算法的强化自动摘要模型(A2C-RLAS)。首先,用基于卷积神经网络(CNN)和循环神经网络(RNN)的混合神经网络的抽取器(extractor)来提取原文关键句;然后,用基于拷贝机制和注意力机制的重写器(rewriter)来精炼关键句;最后,使用强化学习的优势演员-评论家(A2C)算法训练整个网络,把重写摘要和参考摘要的语义相似性(BERTScore值)作为奖励(reward)来指导抽取过程,从而提高抽取器提取句子的质量。在CNN/Daily Mail数据集上的实验结果表明,与基于强化学习的抽取式摘要(Refresh)模型、基于循环神经网络的抽取式摘要序列模型(SummaRuNNer)和分布语义奖励(DSR)模型等模型相比,A2C-RLAS的最终摘要内容更加准确、语言更加流畅,冗余的内容有效减少,且A2C-RLAS的ROUGE和BERTScore指标均有提升。相较于Refresh模型和SummaRuNNer模型,A2C-RLAS模型的ROUGE-L值分别提高了6.3%和10.2%;相较于DSR模型,A2C-RLAS模型的F1值提高了30.5%。 展开更多
关键词 自动摘要模型 抽取式摘要模型 生成式摘要模型 编码器-解码器 强化学习 优势演员-评论家算法
下载PDF
A3C深度强化学习模型压缩及知识抽取 被引量:2
3
作者 张晶 王子铭 任永功 《计算机研究与发展》 EI CSCD 北大核心 2023年第6期1373-1384,共12页
异步优势演员评论家(asynchronous advantage actor-critic,A3C)构建一主多从异步并行深度强化学习框架,其在最优策略探索中存在求解高方差问题,使主智能体难以保证全局最优参数更新及最佳策略学习.同时,利用百万计算资源构建的大规模... 异步优势演员评论家(asynchronous advantage actor-critic,A3C)构建一主多从异步并行深度强化学习框架,其在最优策略探索中存在求解高方差问题,使主智能体难以保证全局最优参数更新及最佳策略学习.同时,利用百万计算资源构建的大规模并行网络,难以部署低功耗近端平台.针对上述问题,提出紧凑异步优势演员评论家(Compact_A3C)模型,实现模型压缩及知识抽取.该模型冻结并评价A3C框架中所有子智能体学习效果,将评价结果转化为主智能体更新概率,保证全局最优策略获取,提升大规模网络资源利用率.进一步,模型将优化主智能体作为“教师网络”,监督小规模“学生网络”前期探索与策略引导,并构建线性衰减损失函数鼓励“学生网络”对复杂环境自由探索,强化自主学习能力,实现大规模A3C模型知识抽取及网络压缩.建立不同压缩比“学生网络”,在流行Gym Classic Control与Atari 2600环境中达到了与大规模“教师网络”一致的学习效果.模型代码公布在https://github.com/meadewaking/Compact_A3C. 展开更多
关键词 强化学习 深度强化学习 演员评论家模型 异步优势演员评论家模型 模型压缩
下载PDF
深度强化学习驱动下的智能电网通信网业务路由分配方法研究
4
作者 胡楠 张维 《通信电源技术》 2024年第10期43-45,共3页
在现代化背景下,为确保电力系统的稳定运行,相关人员需要结合实际情况逐步推进智能电网的构建。智能电网以各项数据的获取、处理、保护为核心,建立了集成通信系统。文章针对深度强化学习驱动下的智能电网通信网业务路由分配方法展开分析... 在现代化背景下,为确保电力系统的稳定运行,相关人员需要结合实际情况逐步推进智能电网的构建。智能电网以各项数据的获取、处理、保护为核心,建立了集成通信系统。文章针对深度强化学习驱动下的智能电网通信网业务路由分配方法展开分析,以提高通信资源利用率,提升业务路由方法的稳定性和可靠性。 展开更多
关键词 智能电网 通信网 深度Q网络(DQN)算法 异步优势演员-评论家(A3C)算法 深度学习
下载PDF
移动边缘计算辅助智能驾驶中基于高效联邦学习的碰撞预警算法 被引量:2
5
作者 唐伦 文明艳 +1 位作者 单贞贞 陈前斌 《电子与信息学报》 EI CSCD 北大核心 2023年第7期2406-2414,共9页
智能驾驶中的碰撞避免任务存在对时延要求极高和隐私保护等挑战。首先,该文提出一种基于自适应调整参数的半异步联邦学习(SFLAAP)的门控循环单元联合支持向量机(GRU_SVM)碰撞多级预警算法,SFLAAP可根据训练和资源情况动态调整两个训练参... 智能驾驶中的碰撞避免任务存在对时延要求极高和隐私保护等挑战。首先,该文提出一种基于自适应调整参数的半异步联邦学习(SFLAAP)的门控循环单元联合支持向量机(GRU_SVM)碰撞多级预警算法,SFLAAP可根据训练和资源情况动态调整两个训练参数:本地训练次数和参与聚合的局部模型数量。然后,为解决资源受限的移动边缘计算(MEC)下碰撞预警模型协作训练的效率问题,根据上述参数与SFLAAP训练时延的关系,建立训练总时延最小化模型,并将其转化为马尔可夫决策过程(MDP)。最后,在所建立的MDP中采用异步优势演员-评论家(A3C)学习求解,自适应地确定最优训练参数,从而减少碰撞预警模型的训练完成时间。仿真结果表明,所提算法有效地降低训练总时延并保证预测精度。 展开更多
关键词 碰撞预警 联邦学习 移动边缘计算 异步优势演员-评论家算法
下载PDF
基于自适应多目标强化学习的服务集成方法
6
作者 郭潇 李春山 +1 位作者 张宇跃 初佃辉 《计算机应用》 CSCD 北大核心 2022年第11期3500-3505,共6页
当前服务互联网(IoS)中的服务资源呈现精细化、专业化的趋势,功能单一的服务无法满足用户复杂多变的需求,服务集成调度方法已经成为服务计算领域的热点。现有的服务集成调度方法大都只考虑用户需求的满足,未考虑IoS生态系统的可持续性... 当前服务互联网(IoS)中的服务资源呈现精细化、专业化的趋势,功能单一的服务无法满足用户复杂多变的需求,服务集成调度方法已经成为服务计算领域的热点。现有的服务集成调度方法大都只考虑用户需求的满足,未考虑IoS生态系统的可持续性。针对上述问题,提出一种基于自适应多目标强化学习的服务集成方法,该方法在异步优势演员评论家(A3C)算法的框架下引入多目标优化策略,从而在满足用户需求的同时保证IoS生态系统的健康发展。所提方法可以根据遗憾值对多目标值集成权重进行动态调整,改善多目标强化学习中子目标值不平衡的现象。在真实大规模服务环境下进行了服务集成验证,实验结果表明所提方法相对于传统机器学习方法在大规模服务环境下求解速度更快;相较于权重固定的强化学习(RL),各目标的求解质量更均衡。 展开更多
关键词 服务集成 强化学习 异步优势演员评论家算法 多目标优化 自适应权重
下载PDF
雾无线接入网中面向时延的协作缓存策略
7
作者 江帆 韩少江 +1 位作者 刘磊 陈艺洋 《西安邮电大学学报》 2023年第2期1-9,共9页
为了改善雾无线接入网(Fog-Radio Access Networks,F-RANs)中多个边缘节点之间的协作缓存问题,提出基于异步优势演员评论家(Asynchronous Advantage Actor-Critic,A3C)算法的协作缓存策略。该策略根据用户的历史请求信息学习用户偏好模... 为了改善雾无线接入网(Fog-Radio Access Networks,F-RANs)中多个边缘节点之间的协作缓存问题,提出基于异步优势演员评论家(Asynchronous Advantage Actor-Critic,A3C)算法的协作缓存策略。该策略根据用户的历史请求信息学习用户偏好模型,并利用区域用户的偏好模型预测每个雾接入节点(Fog-Access Point,F-AP)服务区域内的局部内容流行度。为了提高边缘节点存储空间的利用率,考虑F-AP以及用户设备(User Equipment,UE)间的协作缓存,以最小化用户获取请求内容的平均下载时延为目标,根据获得的内容流行度分布,优化热门内容的缓存位置。将所提策略与参考策略、贪婪缓存策略和随机缓存策略等3种策略相比,仿真结果表明,所提策略能够实现更低的平均内容下载时延。 展开更多
关键词 雾无线接入网 协作缓存 异步优势演员评论家算法 平均下载时延
下载PDF
基于A3C的特征重构工艺路线规划方法
8
作者 陶鑫钰 王艳 纪志成 《现代制造工程》 CSCD 北大核心 2023年第10期15-26,共12页
针对柔性加工系统中零件发生特征重构的工艺路线规划问题,结合异步优势演员-评论家(A3C)算法的并行、异步、响应速度快以及决策经验可复用性、可扩展性的特点,提出了基于A3C算法的特征重构工艺路线规划方法。在零件发生特征重构的背景下... 针对柔性加工系统中零件发生特征重构的工艺路线规划问题,结合异步优势演员-评论家(A3C)算法的并行、异步、响应速度快以及决策经验可复用性、可扩展性的特点,提出了基于A3C算法的特征重构工艺路线规划方法。在零件发生特征重构的背景下,基于马尔可夫决策过程定义了状态、动作空间和奖励函数。针对A3C智能体在选取机床、刀具和进刀方向时可能会陷入局部最优,提出了随机贪婪策略,以扩大解的空间、提高解的质量,且为了避免A3C智能体在零件发生特征重构时陷入大量的试错中,提出了快失败策略,以加快智能体规避特征约束的能力,提高响应速度。仿真实验证明,所提方法能有效解决零件发生特征重构的工艺路线规划问题,且相比基于遗传、蚁群和模拟退火算法的工艺路线规划方法,所提方法在零件发生特征重构时响应速度更快,解的质量更高。 展开更多
关键词 异步优势演员-评论家 特征重构 工艺路线 深度强化学习 马尔可夫决策过程
下载PDF
一种新的基于强化学习改进SAR的无人机路径规划
9
作者 周文娟 张超群 +3 位作者 汤卫东 易云恒 刘文武 秦唯栋 《控制与决策》 EI CSCD 北大核心 2024年第4期1203-1211,共9页
搜索和救援优化算法(SAR)是2020年提出的模拟搜救行为的一种元启发式优化算法,用来解决工程中的约束优化问题.但是,SAR存在收敛慢、个体不能自适应选择操作等问题,鉴于此,提出一种新的基于强化学习改进的SAR算法(即RLSAR).该算法重新设... 搜索和救援优化算法(SAR)是2020年提出的模拟搜救行为的一种元启发式优化算法,用来解决工程中的约束优化问题.但是,SAR存在收敛慢、个体不能自适应选择操作等问题,鉴于此,提出一种新的基于强化学习改进的SAR算法(即RLSAR).该算法重新设计SAR的局部搜索和全局搜索操作,并增加路径调整操作,采用异步优势演员评论家算法(A3C)训练强化学习模型使得SAR个体获得自适应选择算子的能力.所有智能体在威胁区数量、位置和大小均随机生成的动态环境中训练,进而从每个动作的贡献、不同威胁区下规划出的路径长度和每个个体的执行操作序列3个方面对训练好的模型进行探索性实验.实验结果表明,RLSAR比标准SAR、差分进化算法、松鼠搜索算法具有更高的收敛速度,能够在随机生成的三维动态环境中成功地为无人机规划出更加经济且安全有效的可行路径,表明所提出算法可作为一种有效的无人机路径规划方法. 展开更多
关键词 强化学习 搜索与救援优化算法 异步优势演员-评论家算法 路径规划 路径调整 无人机
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部