期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于柔性演员-评论家算法的决策规划协同研究
1
作者 唐斌 刘光耀 +3 位作者 江浩斌 田宁 米伟 王春宏 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第2期105-113,187,共10页
为了解决基于常规深度强化学习(Deep Reinforcement Learning, DRL)的自动驾驶决策存在学习速度慢、安全性及合理性较差的问题,本文提出一种基于柔性演员-评论家(Soft Actor-Critic,SAC)算法的自动驾驶决策规划协同方法,并将SAC算法与... 为了解决基于常规深度强化学习(Deep Reinforcement Learning, DRL)的自动驾驶决策存在学习速度慢、安全性及合理性较差的问题,本文提出一种基于柔性演员-评论家(Soft Actor-Critic,SAC)算法的自动驾驶决策规划协同方法,并将SAC算法与基于规则的决策规划方法相结合设计自动驾驶决策规划协同智能体。结合自注意力机制(Self Attention Mechanism, SAM)和门控循环单元(Gate Recurrent Unit, GRU)构建预处理网络;根据规划模块的具体实现方式设计动作空间;运用信息反馈思想设计奖励函数,给智能体添加车辆行驶条件约束,并将轨迹信息传递给决策模块,实现决策规划的信息协同。在CARLA自动驾驶仿真平台中搭建交通场景对智能体进行训练,并在不同场景中将所提出的决策规划协同方法与常规的基于SAC算法的决策规划方法进行比较,结果表明,本文所设计的自动驾驶决策规划协同智能体学习速度提高了25.10%,由其决策结果生成的平均车速更高,车速变化率更小,更接近道路期望车速,路径长度与曲率变化率更小。 展开更多
关键词 智能交通 自动驾驶 柔性演员-评论家算法 决策规划协同 深度强化学习
下载PDF
基于异步优势演员-评论家学习的服务功能链资源分配算法 被引量:8
2
作者 唐伦 贺小雨 +3 位作者 王晓 谭颀 胡彦娟 陈前斌 《电子与信息学报》 EI CSCD 北大核心 2021年第6期1733-1741,共9页
考虑网络全局信息难以获悉的实际情况,针对接入网切片场景下用户终端(UE)的移动性和数据包到达的动态性导致的资源分配优化问题,该文提出了一种基于异步优势演员-评论家(A3C)学习的服务功能链(SFC)资源分配算法。首先,该算法建立基于区... 考虑网络全局信息难以获悉的实际情况,针对接入网切片场景下用户终端(UE)的移动性和数据包到达的动态性导致的资源分配优化问题,该文提出了一种基于异步优势演员-评论家(A3C)学习的服务功能链(SFC)资源分配算法。首先,该算法建立基于区块链的资源管理机制,通过区块链技术实现可信地共享并更新网络全局信息,监督并记录SFC资源分配过程。然后,建立UE移动和数据包到达时变情况下的无线资源、计算资源和带宽资源联合分配的时延最小化模型,并进一步将其转化为马尔科夫决策过程(MDP)。最后,在所建立的MDP中采用A3C学习方法,实现资源分配策略的求解。仿真结果表明,该算法能够更加合理高效地利用资源,优化系统时延并保证UE需求。 展开更多
关键词 网络切片 服务功能链资源分配 马尔科夫决策过程 异步优势演员-评论家学习 区块链
下载PDF
基于视觉注意力机制的异步优势行动者-评论家算法 被引量:1
3
作者 李杰 凌兴宏 +1 位作者 伏玉琛 刘全 《计算机科学》 CSCD 北大核心 2019年第5期169-174,共6页
异步深度强化学习能够通过多线程技术极大地减少学习模型所需要的训练时间。然而作为异步深度强化学习的一种经典算法,异步优势行动者-评论家算法没有充分利用某些具有重要价值的区域信息,网络模型的学习效率不够理想。针对此问题,文中... 异步深度强化学习能够通过多线程技术极大地减少学习模型所需要的训练时间。然而作为异步深度强化学习的一种经典算法,异步优势行动者-评论家算法没有充分利用某些具有重要价值的区域信息,网络模型的学习效率不够理想。针对此问题,文中提出一种基于视觉注意力机制的异步优势行动者-评论家模型。该模型在传统异步优势行动者-评论家算法的基础上引入了视觉注意力机制,通过计算图像各区域点的视觉重要性值,利用回归、加权等操作得到注意力机制的上下文向量,从而使Agent将注意力集中于面积较小但更具丰富价值的图像区域,加快网络模型解码速度,更高效地学习近似最优策略。实验结果表明,与传统的异步优势行动者-评论家算法相比,该模型在基于视觉感知的决策任务上具有更好的性能表现。 展开更多
关键词 异步深度强化学习 视觉注意力机制 行动者-评论家 异步优势行动者-评论家
下载PDF
基于优势演员-评论家算法的强化自动摘要模型 被引量:6
4
作者 杜嘻嘻 程华 房一泉 《计算机应用》 CSCD 北大核心 2021年第3期699-705,共7页
针对长文本自动摘要任务中抽取式模型摘要较为冗余,而生成式摘要模型时常有关键信息丢失、摘要不准确和生成内容重复等问题,提出一种面向长文本的基于优势演员-评论家算法的强化自动摘要模型(A2C-RLAS)。首先,用基于卷积神经网络(CNN)... 针对长文本自动摘要任务中抽取式模型摘要较为冗余,而生成式摘要模型时常有关键信息丢失、摘要不准确和生成内容重复等问题,提出一种面向长文本的基于优势演员-评论家算法的强化自动摘要模型(A2C-RLAS)。首先,用基于卷积神经网络(CNN)和循环神经网络(RNN)的混合神经网络的抽取器(extractor)来提取原文关键句;然后,用基于拷贝机制和注意力机制的重写器(rewriter)来精炼关键句;最后,使用强化学习的优势演员-评论家(A2C)算法训练整个网络,把重写摘要和参考摘要的语义相似性(BERTScore值)作为奖励(reward)来指导抽取过程,从而提高抽取器提取句子的质量。在CNN/Daily Mail数据集上的实验结果表明,与基于强化学习的抽取式摘要(Refresh)模型、基于循环神经网络的抽取式摘要序列模型(SummaRuNNer)和分布语义奖励(DSR)模型等模型相比,A2C-RLAS的最终摘要内容更加准确、语言更加流畅,冗余的内容有效减少,且A2C-RLAS的ROUGE和BERTScore指标均有提升。相较于Refresh模型和SummaRuNNer模型,A2C-RLAS模型的ROUGE-L值分别提高了6.3%和10.2%;相较于DSR模型,A2C-RLAS模型的F1值提高了30.5%。 展开更多
关键词 自动摘要模型 抽取式摘要模型 生成式摘要模型 编码器-解码器 强化学习 优势演员-评论家算法
下载PDF
基于优势演员-评论家算法的危险货物集装箱堆场安全堆存空间分配
5
作者 沈阳 黄诚 宓为建 《上海海事大学学报》 北大核心 2022年第3期13-20,61,共9页
针对危险货物集装箱(简称危货箱)堆场堆存空间分配的安全性问题,通过分析危货箱堆存的风险因素及安全堆存规范,提出一种以安全堆存空间利用率和安全指数最大为目标的危货箱堆场安全堆存空间分配多目标优化模型。设计优势演员-评论家(adv... 针对危险货物集装箱(简称危货箱)堆场堆存空间分配的安全性问题,通过分析危货箱堆存的风险因素及安全堆存规范,提出一种以安全堆存空间利用率和安全指数最大为目标的危货箱堆场安全堆存空间分配多目标优化模型。设计优势演员-评论家(advantage actor-critic,A2C)算法对模型进行求解,并通过算例分析和对比验证方法的有效性及优越性。结果表明,该方法能够获得在降低作业风险和提高事故应急处置能力条件下的危货箱堆场最优堆存空间分配策略,从而提高危货箱堆存安全性和堆场利用率。 展开更多
关键词 危险货物集装箱 安全堆存空间分配 多目标优化 优势演员-评论家算法
下载PDF
基于A3C的认知物联网通信干扰消除算法
6
作者 刘新梦 谢健骊 +1 位作者 李翠然 王亦鸣 《计算机工程》 CAS CSCD 北大核心 2024年第10期281-290,共10页
针对频谱资源干扰管理的智能化需求,提出一种基于异步优势行动者-评论家(A3C)的干扰消除算法,旨在应对认知物联网(CIoT)通信系统中由频谱资源共享引起的干扰问题。通过智能体的学习和优化,帮助次级用户(SU)在受到干扰影响时做出最优的决... 针对频谱资源干扰管理的智能化需求,提出一种基于异步优势行动者-评论家(A3C)的干扰消除算法,旨在应对认知物联网(CIoT)通信系统中由频谱资源共享引起的干扰问题。通过智能体的学习和优化,帮助次级用户(SU)在受到干扰影响时做出最优的决策,从而改善通信质量和系统性能。在该算法中,当SU遭受干扰影响通信质量时,智能体通过学习和优化,使SU能够根据当前的位置信息、发射功率、接收功率以及干扰程度选择最低干扰程度的行动,并执行该行动后获得的奖励。智能体通过尝试不同减少干扰的行动,并根据奖励的反馈调整策略,达到最大化定义干扰程度指标和信号质量指标的奖励函数的目的,从而最大程度地减少干扰对通信质量的影响。实验结果表明,与传统k-means算法以及深度递归Q网络(DRQN)和深度Q网络(DQN)优化算法相比,基于A3C的干扰消除算法具有更短的收敛时间、更高的执行效率以及更高的系统吞吐量,较3种基准方法在吞吐量性能上至少提高7%,能够有效地减少干扰对通信质量的不利影响。 展开更多
关键词 认知物联网 干扰消除 异步优势行动者-评论家算法 干扰程度 信号质量 吞吐量
下载PDF
移动边缘计算辅助智能驾驶中基于高效联邦学习的碰撞预警算法 被引量:2
7
作者 唐伦 文明艳 +1 位作者 单贞贞 陈前斌 《电子与信息学报》 EI CSCD 北大核心 2023年第7期2406-2414,共9页
智能驾驶中的碰撞避免任务存在对时延要求极高和隐私保护等挑战。首先,该文提出一种基于自适应调整参数的半异步联邦学习(SFLAAP)的门控循环单元联合支持向量机(GRU_SVM)碰撞多级预警算法,SFLAAP可根据训练和资源情况动态调整两个训练参... 智能驾驶中的碰撞避免任务存在对时延要求极高和隐私保护等挑战。首先,该文提出一种基于自适应调整参数的半异步联邦学习(SFLAAP)的门控循环单元联合支持向量机(GRU_SVM)碰撞多级预警算法,SFLAAP可根据训练和资源情况动态调整两个训练参数:本地训练次数和参与聚合的局部模型数量。然后,为解决资源受限的移动边缘计算(MEC)下碰撞预警模型协作训练的效率问题,根据上述参数与SFLAAP训练时延的关系,建立训练总时延最小化模型,并将其转化为马尔可夫决策过程(MDP)。最后,在所建立的MDP中采用异步优势演员-评论家(A3C)学习求解,自适应地确定最优训练参数,从而减少碰撞预警模型的训练完成时间。仿真结果表明,所提算法有效地降低训练总时延并保证预测精度。 展开更多
关键词 碰撞预警 联邦学习 移动边缘计算 异步优势演员-评论家算法
下载PDF
基于Multi-Agent异步深度强化学习的居民住宅能耗在线优化调度研究 被引量:26
8
作者 张虹 申鑫 +2 位作者 穆昊源 刘艾冬 王鹤 《中国电机工程学报》 EI CSCD 北大核心 2020年第1期117-127,共11页
为促进居民用户柔性负荷高效参与需求响应,帮助用户从被动角色转变为主动角色,实现需求侧最大效益。该文在智能电网环境下,根据用电设备的特性,以概率论的角度对家电设备状态进行描述定义,基于异步深度强化学习(asynchronous deep reinf... 为促进居民用户柔性负荷高效参与需求响应,帮助用户从被动角色转变为主动角色,实现需求侧最大效益。该文在智能电网环境下,根据用电设备的特性,以概率论的角度对家电设备状态进行描述定义,基于异步深度强化学习(asynchronous deep reinforcement learning,ADRL)进行家庭能源管理系统调度的在线优化。学习过程采用异步优势演员–评判家(asynchronous advantage actor-critic,A3C)方法,联合用户历史用电设备运行状态的概率分布,通过多智能体利用CPU多线程功能同时执行多个动作的决策。该方法在包括光伏发电、电动汽车和居民住宅电器设备信息的某高维数据库上进行仿真验证。最后通过不同住宅情境下的优化决策效果对比分析可知,所提在线能耗调度策略可用于向电力用户提供实时反馈,以实现用户用电经济性目标。 展开更多
关键词 异步优势演员-评判家 需求响应 概率分布 在线优化 多智能体 多动作决策
下载PDF
考虑综合需求响应的电-气-热综合能源系统低碳经济调度 被引量:5
9
作者 董健 王海鑫 +2 位作者 周夕然 高柳 杨俊友 《华北电力大学学报(自然科学版)》 CAS 北大核心 2023年第3期81-90,共10页
综合能源系统优化调度对提高能源利用效率与低碳运行起到关键作用。然而,由于综合能源系统存在多种能源耦合及源荷侧不确定性,传统调度方法难以准确适应系统源荷动态变化。针对该问题,采用基于深度强化学习的方法,主要通过数据驱动的方... 综合能源系统优化调度对提高能源利用效率与低碳运行起到关键作用。然而,由于综合能源系统存在多种能源耦合及源荷侧不确定性,传统调度方法难以准确适应系统源荷动态变化。针对该问题,采用基于深度强化学习的方法,主要通过数据驱动的方式解决了综合能源能源系统调度中的不确定性问题,同时可以准确适应系统源荷动态变化,实现快速求解。充分挖崛负荷侧灵活性,首先建立考虑综合需求响应的综合能源系统低碳经济调度模型。将含有多重不确定性的综合能源系统经济调度问题描述为马尔科夫决策过程(markov decision process,MDP),采用异步优势演员-评判家(asynchronous advantage actor-critic,A3C)方法进行求解。最后,实例仿真结果表明,相比于DQN和DDPG方法,综合能源系统的日平均运行成本分别降低了8.7%和5.2%。 展开更多
关键词 综合能源系统 综合需求响应 异步优势演员-评判家 低碳优化调度
下载PDF
基于最大熵深度强化学习的双足机器人步态控制方法 被引量:1
10
作者 李源潮 陶重犇 王琛 《计算机应用》 CSCD 北大核心 2024年第2期445-451,共7页
针对双足机器人连续直线行走的步态稳定控制问题,提出一种基于最大熵深度强化学习(DRL)的柔性演员-评论家(SAC)步态控制方法。首先,该方法无需事先建立准确的机器人动力学模型,所有参数均来自关节角而无需额外的传感器;其次,采用余弦相... 针对双足机器人连续直线行走的步态稳定控制问题,提出一种基于最大熵深度强化学习(DRL)的柔性演员-评论家(SAC)步态控制方法。首先,该方法无需事先建立准确的机器人动力学模型,所有参数均来自关节角而无需额外的传感器;其次,采用余弦相似度方法对经验样本分类,优化经验回放机制;最后,根据知识和经验设计奖励函数,使双足机器人在直线行走训练过程中不断进行姿态调整,确保直线行走的鲁棒性。在Roboschool仿真环境中与其他先进深度强化学习算法,如近端策略优化(PPO)方法和信赖域策略优化(TRPO)方法的实验对比结果表明,所提方法不仅实现了双足机器人快速稳定的直线行走,而且鲁棒性更好。 展开更多
关键词 双足机器人 步态控制 深度强化学习 最大熵 柔性演员-评论家算法
下载PDF
基于多域联合的无人机集群认知抗干扰算法 被引量:11
11
作者 刘春玲 刘敏提 丁元明 《计算机工程》 CAS CSCD 北大核心 2020年第12期193-200,共8页
为解决无人机集群网络在复杂通信环境中对抗智能性干扰能力较弱的问题,基于智能决策理论,提出一种多域联合的认知抗干扰算法。该算法在优势演员-评论家算法的基础上,将无人机视作智能体,并由感知到的环境频谱状态决策出干扰信道。基于St... 为解决无人机集群网络在复杂通信环境中对抗智能性干扰能力较弱的问题,基于智能决策理论,提出一种多域联合的认知抗干扰算法。该算法在优势演员-评论家算法的基础上,将无人机视作智能体,并由感知到的环境频谱状态决策出干扰信道。基于Stackelberg博弈理论,利用功率域压制中度干扰等级的信道干扰信号,减少切换信道的时间开销。通过引入簇头协助的方法,解决由于单个智能体局部频谱感知能力较弱而导致信道决策成功率较低的问题。仿真结果表明,相比QL-AJ算法与AC-AJ算法,该算法能够给出簇内最佳节点个数,提高接收信号信干噪比,且网络整体抗干扰性能较好。 展开更多
关键词 认知抗干扰算法 优势演员-评论家算法 STACKELBERG博弈 无人机集群 分布式网络
下载PDF
基于深度强化学习的零售库存管理
12
作者 朱鹏霖 《科技促进发展》 2024年第5期458-467,共10页
在数字化快速发展的商业环境下,为了在激烈的市场竞争中保持竞争力,实体零售商亟需采用高效的方法来优化其库存管理。本研究依托于深度强化学习理论,应用优势演员-评论家算法,为实体零售商优化库存管理提供科学指导。具体地,本研究利用... 在数字化快速发展的商业环境下,为了在激烈的市场竞争中保持竞争力,实体零售商亟需采用高效的方法来优化其库存管理。本研究依托于深度强化学习理论,应用优势演员-评论家算法,为实体零售商优化库存管理提供科学指导。具体地,本研究利用真实历史销售数据构建模拟训练环境,并采用深度神经网络学习并优化针对多品类商品在有限容量约束下的库存管理策略。本研究具有重要的理论意义和实际应用价值,为实体零售商在竞争激烈的市场环境中实现高效库存管理提供了新的思路和方法。 展开更多
关键词 深度强化学习 优势演员-评论家 零售 库存管理
下载PDF
深度强化学习驱动下的智能电网通信网业务路由分配方法研究
13
作者 胡楠 张维 《通信电源技术》 2024年第10期43-45,共3页
在现代化背景下,为确保电力系统的稳定运行,相关人员需要结合实际情况逐步推进智能电网的构建。智能电网以各项数据的获取、处理、保护为核心,建立了集成通信系统。文章针对深度强化学习驱动下的智能电网通信网业务路由分配方法展开分析... 在现代化背景下,为确保电力系统的稳定运行,相关人员需要结合实际情况逐步推进智能电网的构建。智能电网以各项数据的获取、处理、保护为核心,建立了集成通信系统。文章针对深度强化学习驱动下的智能电网通信网业务路由分配方法展开分析,以提高通信资源利用率,提升业务路由方法的稳定性和可靠性。 展开更多
关键词 智能电网 通信网 深度Q网络(DQN)算法 异步优势演员-评论家(A3C)算法 深度学习
下载PDF
基于A3C的多功能雷达认知干扰决策方法 被引量:3
14
作者 邹玮琦 牛朝阳 +2 位作者 刘伟 高欧阳 张浩波 《系统工程与电子技术》 EI CSCD 北大核心 2023年第1期86-92,共7页
在多功能雷达对抗领域,目前基于强化学习理论的认知干扰决策方法难以满足雷达对抗高实时性要求。对此,将异步优势行动者-评论家(asynchronous advantage actor-critic,A3C)算法引入到认知干扰决策领域,设计了包括干扰机模型、环境模型(... 在多功能雷达对抗领域,目前基于强化学习理论的认知干扰决策方法难以满足雷达对抗高实时性要求。对此,将异步优势行动者-评论家(asynchronous advantage actor-critic,A3C)算法引入到认知干扰决策领域,设计了包括干扰机模型、环境模型(目标方多功能雷达)以及交互机制的认知干扰决策整体框架,制定了干扰决策流程,干扰机模型利用异步多线程方式与环境模型进行交互训练。仿真实验表明,在扩充雷达任务转换关系表的基础上,所提方法与基于深度Q网络(deep Q network,DQN)的认知干扰决策系列方法相比,极大地提高了时间效率,平均决策时间降低70%以上,并且在决策准确度上有着明显优势,表明所提方法能够为多功能雷达对抗决策提供更有力的技术支撑。 展开更多
关键词 干扰决策 异步优势 行动者-评论家 时间效率 决策准确度
下载PDF
A3C深度强化学习模型压缩及知识抽取 被引量:2
15
作者 张晶 王子铭 任永功 《计算机研究与发展》 EI CSCD 北大核心 2023年第6期1373-1384,共12页
异步优势演员评论家(asynchronous advantage actor-critic,A3C)构建一主多从异步并行深度强化学习框架,其在最优策略探索中存在求解高方差问题,使主智能体难以保证全局最优参数更新及最佳策略学习.同时,利用百万计算资源构建的大规模... 异步优势演员评论家(asynchronous advantage actor-critic,A3C)构建一主多从异步并行深度强化学习框架,其在最优策略探索中存在求解高方差问题,使主智能体难以保证全局最优参数更新及最佳策略学习.同时,利用百万计算资源构建的大规模并行网络,难以部署低功耗近端平台.针对上述问题,提出紧凑异步优势演员评论家(Compact_A3C)模型,实现模型压缩及知识抽取.该模型冻结并评价A3C框架中所有子智能体学习效果,将评价结果转化为主智能体更新概率,保证全局最优策略获取,提升大规模网络资源利用率.进一步,模型将优化主智能体作为“教师网络”,监督小规模“学生网络”前期探索与策略引导,并构建线性衰减损失函数鼓励“学生网络”对复杂环境自由探索,强化自主学习能力,实现大规模A3C模型知识抽取及网络压缩.建立不同压缩比“学生网络”,在流行Gym Classic Control与Atari 2600环境中达到了与大规模“教师网络”一致的学习效果.模型代码公布在https://github.com/meadewaking/Compact_A3C. 展开更多
关键词 强化学习 深度强化学习 演员评论家模型 异步优势演员评论家模型 模型压缩
下载PDF
雾无线接入网中面向时延的协作缓存策略
16
作者 江帆 韩少江 +1 位作者 刘磊 陈艺洋 《西安邮电大学学报》 2023年第2期1-9,共9页
为了改善雾无线接入网(Fog-Radio Access Networks,F-RANs)中多个边缘节点之间的协作缓存问题,提出基于异步优势演员评论家(Asynchronous Advantage Actor-Critic,A3C)算法的协作缓存策略。该策略根据用户的历史请求信息学习用户偏好模... 为了改善雾无线接入网(Fog-Radio Access Networks,F-RANs)中多个边缘节点之间的协作缓存问题,提出基于异步优势演员评论家(Asynchronous Advantage Actor-Critic,A3C)算法的协作缓存策略。该策略根据用户的历史请求信息学习用户偏好模型,并利用区域用户的偏好模型预测每个雾接入节点(Fog-Access Point,F-AP)服务区域内的局部内容流行度。为了提高边缘节点存储空间的利用率,考虑F-AP以及用户设备(User Equipment,UE)间的协作缓存,以最小化用户获取请求内容的平均下载时延为目标,根据获得的内容流行度分布,优化热门内容的缓存位置。将所提策略与参考策略、贪婪缓存策略和随机缓存策略等3种策略相比,仿真结果表明,所提策略能够实现更低的平均内容下载时延。 展开更多
关键词 雾无线接入网 协作缓存 异步优势演员评论家算法 平均下载时延
下载PDF
一种基于强化学习的商业建筑能量管理方法
17
作者 杨雯婷 郁进明 《物联网技术》 2023年第9期94-97,共4页
在智能建筑的能源管理中,为了最大限度地降低建筑能源成本,在保持建筑内管道水力平衡的同时,需要有效控制供暖、通风和空调(HVAC)系统并尽可能减少能源消耗。该文综合考虑商业建筑中储能、空调、水力单元调度,设计独立可控的HVAC系统,... 在智能建筑的能源管理中,为了最大限度地降低建筑能源成本,在保持建筑内管道水力平衡的同时,需要有效控制供暖、通风和空调(HVAC)系统并尽可能减少能源消耗。该文综合考虑商业建筑中储能、空调、水力单元调度,设计独立可控的HVAC系统,在减少建筑暖通空调的能源成本的同时,保证居住者的热舒适度。本文将水力平衡与热舒适度约束下的系统成本最小化问题建立为非凸优化问题,并进一步转化为马尔可夫决策问题;为了解决系统中的不确定性,提出了基于“演员-评论家”的深度强化学习算法来学习最优调度策略。数值仿真表明,与基线算法相比,该算法能降低9.15%的系统成本。 展开更多
关键词 强化学习 能量管理 智能建筑 HVAC 非凸优化 演员-评论家算法
下载PDF
基于A3C的特征重构工艺路线规划方法
18
作者 陶鑫钰 王艳 纪志成 《现代制造工程》 CSCD 北大核心 2023年第10期15-26,共12页
针对柔性加工系统中零件发生特征重构的工艺路线规划问题,结合异步优势演员-评论家(A3C)算法的并行、异步、响应速度快以及决策经验可复用性、可扩展性的特点,提出了基于A3C算法的特征重构工艺路线规划方法。在零件发生特征重构的背景下... 针对柔性加工系统中零件发生特征重构的工艺路线规划问题,结合异步优势演员-评论家(A3C)算法的并行、异步、响应速度快以及决策经验可复用性、可扩展性的特点,提出了基于A3C算法的特征重构工艺路线规划方法。在零件发生特征重构的背景下,基于马尔可夫决策过程定义了状态、动作空间和奖励函数。针对A3C智能体在选取机床、刀具和进刀方向时可能会陷入局部最优,提出了随机贪婪策略,以扩大解的空间、提高解的质量,且为了避免A3C智能体在零件发生特征重构时陷入大量的试错中,提出了快失败策略,以加快智能体规避特征约束的能力,提高响应速度。仿真实验证明,所提方法能有效解决零件发生特征重构的工艺路线规划问题,且相比基于遗传、蚁群和模拟退火算法的工艺路线规划方法,所提方法在零件发生特征重构时响应速度更快,解的质量更高。 展开更多
关键词 异步优势演员-评论家 特征重构 工艺路线 深度强化学习 马尔可夫决策过程
下载PDF
顾及路口压力的A2C交通信号调控
19
作者 张蕾 郭全盛 +1 位作者 林建新 李建武 《计算机仿真》 北大核心 2023年第9期120-124,139,共6页
对城市道路交通进行有效地智能化调控,可以缓解拥堵,缩短出行时间,维护社会稳定,有重要的理论价值和实际意义。为此提出顾及路口压力的多智能体Actor-Critic算法。先设计缓解路口压力的强化学习策略,构建基于深度神经网络的多智能体Acto... 对城市道路交通进行有效地智能化调控,可以缓解拥堵,缩短出行时间,维护社会稳定,有重要的理论价值和实际意义。为此提出顾及路口压力的多智能体Actor-Critic算法。先设计缓解路口压力的强化学习策略,构建基于深度神经网络的多智能体Actor-Critic模型,通过Actor-Critic算法生成行动并做出判别。在SUMO(Simulation of Urban Mobility)平台上模拟交通网络,与三种传统交通信号调控算法进行对比。实验结果表明,所提方法使车辆到达数量提升了12%、车辆平均速度提升了5%,优于其它基准算法。 展开更多
关键词 交通信号控制 强化学习 演员-评论家算法 深度神经网络
下载PDF
一种基于部分可观察马尔可夫决策过程的股票交易策略
20
作者 黄福威 张宁 《东莞理工学院学报》 2023年第1期43-50,共8页
近年来涌现了许多把深度强化学习应用到股票交易策略的研究。深度强化学习通常依赖于马尔可夫决策过程建模,但是股票市场中交易策略的制定需要考虑历史交易数据中包含的信息。因此,本文通过部分可观察马尔可夫决策过程对股票市场建模,... 近年来涌现了许多把深度强化学习应用到股票交易策略的研究。深度强化学习通常依赖于马尔可夫决策过程建模,但是股票市场中交易策略的制定需要考虑历史交易数据中包含的信息。因此,本文通过部分可观察马尔可夫决策过程对股票市场建模,并采用长短期记忆网络和优势演员评论家算法来构建股票交易策略。通过在道琼斯工业平均指数成份股数据集上进行实验,实验结果表明本文所设计的股票交易策略构建方法可以挖掘隐藏在历史数据中的有效信息,获得稳定且有效的交易策略。 展开更多
关键词 股票交易 部分可观察马尔可夫决策过程 优势演员评论家算法
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部