To obtain a low-power and compact implementation of the advanced encryption standard (AES) S- box, an asynchronous pipeline architecture over composite field arithmetic was proposed in this paper. In the presented S...To obtain a low-power and compact implementation of the advanced encryption standard (AES) S- box, an asynchronous pipeline architecture over composite field arithmetic was proposed in this paper. In the presented S-box, some improvements were made as follows. (1) Level-sensitive latches were inserted in data path to block the propagation Of the dynamic hazards, which lowered the power of data path circuit. (2) Operations of latches were controlled by latch controllers based on presented asynchronous sequence element: LC-element, which utilized static asymmetric C-element to construct a simple and power-efficient circuit structure. (3) Implementation of the data path circuit was a semi-custom standard-cell circuit on 0.25μm complementary mental oxide semiconductor (CMOS) process; and the full-custom design methodology was adopted in the handshake circuit design. Experimental results show that the resulting circuit achieves nearly 46% improvement with moderate area penalty ( 11.7% ) compared with the related composite field S-box in power performance. The presented S-box circuit can be a hardware intelli-gent property (IP) embedded in the targeted systems such as wireless sensor networks (WSN), smart-cards and radio frequency identification (RFID).展开更多
This paper proposes an asynchronous complex pipeline based on ARM-V3 instruction set. Muller pipeline structure is used as prototype, and the factors which may affect pipeline performance are analyzed. To balance the ...This paper proposes an asynchronous complex pipeline based on ARM-V3 instruction set. Muller pipeline structure is used as prototype, and the factors which may affect pipeline performance are analyzed. To balance the difficulty of asynchronous design and performance analysis, both complete asynchronous and partial asynchronous structures aere designed and compared. Results of comparison with the well-Rnown industrial product ARM922T verify that about 30% and 40% performance improvement of the partiM and complete asynchronous complex pipelines can be obtained respectively. The design methodologies can also be used in the design of other asynchronous pipelines.展开更多
基金the National High Technology Research and Development Programme of China(Grant No2006AA01Z226)the Project(Grant No2006Z001B)the Scientific Research Foundation of Huazhong University of Science and Technology
文摘To obtain a low-power and compact implementation of the advanced encryption standard (AES) S- box, an asynchronous pipeline architecture over composite field arithmetic was proposed in this paper. In the presented S-box, some improvements were made as follows. (1) Level-sensitive latches were inserted in data path to block the propagation Of the dynamic hazards, which lowered the power of data path circuit. (2) Operations of latches were controlled by latch controllers based on presented asynchronous sequence element: LC-element, which utilized static asymmetric C-element to construct a simple and power-efficient circuit structure. (3) Implementation of the data path circuit was a semi-custom standard-cell circuit on 0.25μm complementary mental oxide semiconductor (CMOS) process; and the full-custom design methodology was adopted in the handshake circuit design. Experimental results show that the resulting circuit achieves nearly 46% improvement with moderate area penalty ( 11.7% ) compared with the related composite field S-box in power performance. The presented S-box circuit can be a hardware intelli-gent property (IP) embedded in the targeted systems such as wireless sensor networks (WSN), smart-cards and radio frequency identification (RFID).
基金the Research Project of China Military Department (No. 6130325)
文摘This paper proposes an asynchronous complex pipeline based on ARM-V3 instruction set. Muller pipeline structure is used as prototype, and the factors which may affect pipeline performance are analyzed. To balance the difficulty of asynchronous design and performance analysis, both complete asynchronous and partial asynchronous structures aere designed and compared. Results of comparison with the well-Rnown industrial product ARM922T verify that about 30% and 40% performance improvement of the partiM and complete asynchronous complex pipelines can be obtained respectively. The design methodologies can also be used in the design of other asynchronous pipelines.