In order to maximize system energy efficiency(EE) under user quality of service(Qo S) restraints in Long Term Evolution-Advanced(LTE-A) networks,a constrained joint resource optimization allocation scheme is presented...In order to maximize system energy efficiency(EE) under user quality of service(Qo S) restraints in Long Term Evolution-Advanced(LTE-A) networks,a constrained joint resource optimization allocation scheme is presented,which is NP-hard. Hence,we divide it into three sub-problems to reduce computation complexity,i.e.,the resource block(RB) allocation,the power distribution,and the modulation and coding scheme(MCS) assignment for user codewords. Then an enhanced heuristic approach GAPSO is proposed and is adopted in the RB and power allocation respectively to reduce computational complexity further on. Moreover,a novel MCS allocation scheme is put forward,which could make a good balance between the system reliability and availability under different channel conditions. Simulation results show that the proposed GAPSO could achieve better performance in convergence speed and global optimum searching,and that the joint resource allocation scheme could improve energy efficiency effectively under user Qo S requirements.展开更多
Efficient spectrum resource allocation in wireless heterogeneous networks is important for improving the system throughput and guaranteeing the user's Quality-of-Service(QoS).In this paper,we propose an enhanced a...Efficient spectrum resource allocation in wireless heterogeneous networks is important for improving the system throughput and guaranteeing the user's Quality-of-Service(QoS).In this paper,we propose an enhanced algorithm for spectrum resource allocation in heterogeneous networks.First,the bandwidth of each user is determined by the user's rate demand and the channel state.Second,graph theory is enhanced and used to improve the spectrum efficiency.Third,spectrum resource is dynamically split between macrocell and femtocells with the changes of users' conditions.Our simulation results show that the proposed algorithm improves the system throughput significantly and also guarantees the fairness for the users.展开更多
This paper is a continuation of the authors' previous paper [1]. In this paper the authors prove, assuming additional conditions on the initial data, some results about the existence and uniqueness of the entropy ...This paper is a continuation of the authors' previous paper [1]. In this paper the authors prove, assuming additional conditions on the initial data, some results about the existence and uniqueness of the entropy weak solutions of the Cauchy problem for the singular hyperbolic system展开更多
基金supported in part by National Natural Science Foundation of China (No.61372070)Natural Science Basic Research Plan in Shaanxi Province of China (2015JM6324)+2 种基金Ningbo Natural Science Foundation (2015A610117)Hong Kong,Macao and Taiwan Science & Technology Cooperation Program of China (2015DFT10160)the 111 Project (B08038)
文摘In order to maximize system energy efficiency(EE) under user quality of service(Qo S) restraints in Long Term Evolution-Advanced(LTE-A) networks,a constrained joint resource optimization allocation scheme is presented,which is NP-hard. Hence,we divide it into three sub-problems to reduce computation complexity,i.e.,the resource block(RB) allocation,the power distribution,and the modulation and coding scheme(MCS) assignment for user codewords. Then an enhanced heuristic approach GAPSO is proposed and is adopted in the RB and power allocation respectively to reduce computational complexity further on. Moreover,a novel MCS allocation scheme is put forward,which could make a good balance between the system reliability and availability under different channel conditions. Simulation results show that the proposed GAPSO could achieve better performance in convergence speed and global optimum searching,and that the joint resource allocation scheme could improve energy efficiency effectively under user Qo S requirements.
基金supported in part by National Natural Science Foundation(61231008)Natural Science Foundation of Shannxi Province(2015JQ6248)+1 种基金National S&T Major Project(2012ZX03003005-005)the 111 Project (B08038)
文摘Efficient spectrum resource allocation in wireless heterogeneous networks is important for improving the system throughput and guaranteeing the user's Quality-of-Service(QoS).In this paper,we propose an enhanced algorithm for spectrum resource allocation in heterogeneous networks.First,the bandwidth of each user is determined by the user's rate demand and the channel state.Second,graph theory is enhanced and used to improve the spectrum efficiency.Third,spectrum resource is dynamically split between macrocell and femtocells with the changes of users' conditions.Our simulation results show that the proposed algorithm improves the system throughput significantly and also guarantees the fairness for the users.
文摘This paper is a continuation of the authors' previous paper [1]. In this paper the authors prove, assuming additional conditions on the initial data, some results about the existence and uniqueness of the entropy weak solutions of the Cauchy problem for the singular hyperbolic system