A series of WO3 samples with different crystalline phases were prepared by the thermal decomposition method from ammonium tungstate hydrate.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-resolution ...A series of WO3 samples with different crystalline phases were prepared by the thermal decomposition method from ammonium tungstate hydrate.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),X-ray photoelectron spectroscopy,and N2 adsorption-desorption were used to characterize the crystalline phase,morphology,particle size,chemical composition,and surface area of the WO3 samples.The formation of hexagonal(h-WO3) and monoclinic(m-WO3) crystal structures of WO3 at different temperatures or different times was confirmed by XRD.m-WO3 is formed at 600 ℃,while m-WO3 starts to transform into h-WO3 at 800℃.However,h-WO3,which forms at 800℃,may transform into m-WO3 by increasing the calcination temperature to 1000℃.SEM results indicate that m-WO3 particles exhibit a bulky shape with heavy aggregates,while h-WO3 particles exhibit a rod-like shape.Moreover,m-WO3 crystals are sporadically patched on the surface of the h-WO3 rod-like particles,resulting in the exposure of both m-WO3 and h-WO3 on the surface.It is observed that the monoclinic phase(m-WO3)/hexagonal phase(h-WO3) junction was fabricated by tuning the calcination temperature and calcination time.The relative ratios between m-WO3 and h-WO3 in the phase junction can readily be tailored by control of the calcination time.The photocatalytic activities of WO3 with different crystalline phases were evaluated by the photocatalytic degradation of rhodamine B as a model pollutant.A higher photocatalytic activity was observed in the WO3 sample with the m-WO3/h-WO3junction as compared with the sample with only m-WO3.The improvement of photocatalytic activity can be attributed to the reduction of the electron-hole recombination rate owing to the formation of the phase junction,whose presence has been confirmed by HRTEM and photoluminescence spectra.展开更多
Metal-N_(4)(M-N_(4))macrocyclic complexes are interesting electrocatalysts due to their well-defined structures and rich molecular tuning.Among them,metal phthalocyanines have been widely studied for the carbon dioxid...Metal-N_(4)(M-N_(4))macrocyclic complexes are interesting electrocatalysts due to their well-defined structures and rich molecular tuning.Among them,metal phthalocyanines have been widely studied for the carbon dioxide reduction reaction(CO_(2)RR)in heterogeneous systems and demonstrated good electrocatalytic performance.However,other complexes like metal corroles and metal porphyrins are much less explored,and often show inferior performances.In this study,three cobalt macrocyclic complexes,cobalt phthalocyanine,cobalt meso-tetraphenylporphyrin,and cobalt meso-triphenylcorrole(CoPc,CoTPP and CoTPC)are investigated in heterogeneous electrocatalysis of CO_(2)RR.Although CoPc/carbon nanotube(CNT)hybrid exhibits high electrocatalytic activity,CNT hybridization does not work for CoTPC and CoTPP that hold weak interactions with CNTs.By the drop-dry method with a high molecular loading of 5.4×10^(–7) mol cm^(–2),CoTPC and CoTPP could deliver appreciable electrode activities.Poly(4-vinylpyridine)(PVP)introduction is further demonstrated as a facile method to afford enhanced activities for CoTPP at low molecular loadings through enhancing molecule-substrate interactions.The partial current density of carbon monoxide for CoTPP+CNT/PVP is around 8 times higher than the sample without PVP at–0.67 V versus reversible hydrogen electrode.This work provides solutions to enhance the electrode activities of molecular electrocatalysts with weak substrate interactions in heterogeneous systems.展开更多
A laboratory reactor was designed to test the effect of the interference instant of HY on the pyrolysis of pubescens.The time instant for intermediate species from pyrolysis to contact HY was controlled by varying the...A laboratory reactor was designed to test the effect of the interference instant of HY on the pyrolysis of pubescens.The time instant for intermediate species from pyrolysis to contact HY was controlled by varying the position of the catalyst bed relative to the pyrolytic cell.It was found that the effect of the interference instant was significant on the variation of different intermediate species,and the yield and quality of the products.The results also showed that,with the increase in the distance between the pyrolytic cell and the catalyst bed,the yield of liquid and relative content of the organics such as aldehyde,phenols,etc.,decreased,while the yield of residue and relative content of acetic acid increased.The deoxygenation of the intermediate species was favored when the catalyst exerted its performance on them immediately after their formation.展开更多
Heterojunction fabrication is one of the most effective strategies for enhancing the photocatalytic performance of semiconductor photocatalysts. Here, TiO2(B)/anatase nanowires with interfacial heterostructures were...Heterojunction fabrication is one of the most effective strategies for enhancing the photocatalytic performance of semiconductor photocatalysts. Here, TiO2(B)/anatase nanowires with interfacial heterostructures were prepared through a three-step synthesis method, including hydrothermal treatment, H+ exchange, and annealing. The phase structures of the nanowires in the bulk and on the surface during the annealing process were monitored by XRD and UV-Raman spectroscopy, respectively. SEM and TEM results indicate that the TiO2(B) nanowires partially collapse and transform into anatase during the annealing process and the heterophase junction structure is formed simultaneously. On the basis of the phase structure together with morphology data, a phase-transformation mechanism was proposed. Photocatalytic activity was evaluated by hydrogen production and pollutant-degradation assays. The optimized structure of the photocatalyst contains 24% TiO2(B) in the bulk and 100% anatase on the surface. The charge-carrier behavior during the photocatalytic process was investigated by photocurrent, electrochemical impedance spectroscopy(EIS), and photoluminescence(PL) spectroscopy, which revealed that the heterophase-junction structure in the bulk was responsible for the highly efficient charge separation and transportation, etc.; the anatase on the surface took control of the high surface-reaction activity.展开更多
Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide in- terest not only for the fundamental research, but also for the application of next generation electronic and optoelectronic de...Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide in- terest not only for the fundamental research, but also for the application of next generation electronic and optoelectronic devices. Herein, we report a successful two-step chemical vapor deposition strategy to construct vertically stacked van der Waals epitaxial In2Se3/MoSe2 heterostructures. Transmission electron microscopy characterization reveals clearly that the In2Se3 has well-aligned lattice orientation with the substrate of monolayer MoSe2. Due to the interaction between the In2Se3 and MoSe2 layers, the heterostructure shows the quench- ing and red-shift of photoluminescence. Moreover, the current rectification behavior and photovoltaic effect can be observed from the heterostructure, which is attributed to the unique band structure alignment of the heterostructure, and is further confirmed by Kevin probe force microscopy measurement. The synthesis approach via van der Waals epitaxy in this work can expand the way to fabricate a variety of two-dimensional heterostructures for potential applications in electronic and optoelectronic devices.展开更多
Results of researches on study of the kinetics and isomerization mechanism of the alkyladamantanes in the presence of the heterogeneous catalysts of the acid type are considered as detection and experimental proof of ...Results of researches on study of the kinetics and isomerization mechanism of the alkyladamantanes in the presence of the heterogeneous catalysts of the acid type are considered as detection and experimental proof of a new intramolecular rearrangement of the carbcations bridged alicyclic hydrocarbons--2,4-moving of the methyl groups (β-methyl shift). The proof of realization of such rearrangement is direct and primary formation 1,4-dimethyladamantane from 1,2-dimethyladamatane, passing a formation stage of the thermodynamic much stable 1,3-dimethyladamantane; direct formation 1,3,6-trimethyladamantane from 1,3,4-trimethyladamantane, excepting a formation stage 1,3.5-trimethyladamantane, and also other isomers which formation is impossible to explain by means of known 1,2-methyl shift (a-methyl shift).展开更多
1. Introduction Zeolites are widely used in acid heterogeneous catalysis [1, 2]. Due to the unique physical and chemical properties ofzeolites, they are widely used in commercial catalytic processes, such as fluidized...1. Introduction Zeolites are widely used in acid heterogeneous catalysis [1, 2]. Due to the unique physical and chemical properties ofzeolites, they are widely used in commercial catalytic processes, such as fluidized catalytic cracking, hydrocracking, methanol conversion to gasoline or olefins, ethylbenzene production, xylene isomerization, aromatics hydrogenation [3-9]. Acidity, high thermal stability, and shape selectivity determine the use of zeolites as catalysts in reaction processes through acid mechanisms [ 10].展开更多
Solar‐driven CO_(2)conversion to precious fossil fuels has been proved to become a potential way to decrease CO_(2)with producing renewable fuels,which mainly relies on photocatalysts with efficient charge separation...Solar‐driven CO_(2)conversion to precious fossil fuels has been proved to become a potential way to decrease CO_(2)with producing renewable fuels,which mainly relies on photocatalysts with efficient charge separation.In this work,a metal free heterostructure of covalent triazine framework(CTF)and graphite carbon nitride(g‐C_(3)N_(4),abbreviated as CN)is applied in the CO_(2)photoreduction for the first time.Detailed characterization methods such as photoluminescence(PL)and time‐resolved PL(TR‐PL)decay are utilized to reveal the photo‐induced carries separating process on g‐C_(3)N_(4)/CTF(CN/CTF)heterostructure.The introduced CTF demonstrated a great boosting photocatalytic activity for CN,bringing about the transform rates of CO_(2)to CO reaching 151.1μmol/(g·h)with a 30 h stabilization time,while negligible CH_(4)was detected.The optimal CN/CTF heterostructure could more efficiently separate charges with a lower probability of recombination under visible light irradiation,which made the photoreduction efficiency of CO_(2)to CO be 25.5 and 2.5 times higher than that of CTF and CN,respectively.This investigation is expected to offer a new thought for fabricating high‐efficiency photocatalyst without metal in solar‐energy‐driven CO_(2)reduction.展开更多
The IR spectroscopic data indicate the tautomeric transformations of typical aprotonic organic fluids such as methane halides with gross formulas CHX3 (X = Cl, Br), CH2X2 (X = CI, Br, I) and CCl4 at normal conditi...The IR spectroscopic data indicate the tautomeric transformations of typical aprotonic organic fluids such as methane halides with gross formulas CHX3 (X = Cl, Br), CH2X2 (X = CI, Br, I) and CCl4 at normal conditions. These transformations lead to the appearance in molecules of activated hydrogen atoms similar in the spectral behaviour to the bounded proton. The classical analysis of IR bands in 5000-600 cm^-1 region, for studied samples and their deuterated derivatives, proves the existence in the presented organic fluids of hydrogen and dihydrogen bonds. This bonding promotes the formation of supramolecular structure in methane halides. The mechanism of unusual binding in liquid phase in terms of common knowledge for the basic chemical properties of the examined compounds is discussed.展开更多
The correlation between summertime Nino3.4 index and western North Pacific(WNP)summer monsoon index has strikingly enhanced since the early 1990 s,with nonsignificant correlation before the early1990 s but significant...The correlation between summertime Nino3.4 index and western North Pacific(WNP)summer monsoon index has strikingly enhanced since the early 1990 s,with nonsignificant correlation before the early1990 s but significant correlation afterward.This observed interdecadal change around the 1990 s may be associated with more frequent occurrences of central Pacific(CP)El Nino and the interdecadal changes in ENSO-associated SST anomalies.During the post-1990 s period(the pre-1990 s period),highly noticeable tropical Atlantic(Indian)Ocean SST anomalies tend to co-occur with the summertime Nino3.4 SST anomalies.The concurrent tropical Atlantic(Indian)Ocean SST anomalies could constructively reinforce(destructively mitigate)the WNP monsoon circulation anomalies induced by the summertime Nino3.4 SST,thus boosting(muting)the correlation between summertime Nino3.4 SST and WNP monsoon.In addition,the faster decaying pace of preceding-winter El Nino after the 1990 s,which may have been mainly induced by the influences from the spring tropical North Atlantic SST anomalies,could also have contributed to the enhanced correlation between the summertime Nino3.4 index and WNP monsoon.These results suggest that the enhanced influences from the tropical Atlantic SST may have triggered the intensified correlation between summertime ENSO and WNP monsoon since the early 1990 s.展开更多
Vapor-liquid phase equilibrium data including composition,densities,molar volume and equilibrium constant of isobutanol in supercritical carbon dioxide from 313.2K to 353.2K were measured in a variable-volume visual c...Vapor-liquid phase equilibrium data including composition,densities,molar volume and equilibrium constant of isobutanol in supercritical carbon dioxide from 313.2K to 353.2K were measured in a variable-volume visual cell.The properties of critical point were obtained by extrapolation.The results showed that critical temperature,critical pressure and critical compressibility factor of CO2-isobutanol system decreased with the increase of critical CO2 content.The phase equilibrium model was established by Peng-Robinson equation of state and van der Waals-2 mixing regulation,and model parameters were determined by optimization calculation of nonlinear least square method.The correlation between calculated values and the experimental data showed good agreement.展开更多
The aim of this study was to design three-phase induction motors with aluminum and copper cage, in the range 0.75 ÷22 kW, to fulfill the 1E3 efficiency level according to typical performance and standard constrai...The aim of this study was to design three-phase induction motors with aluminum and copper cage, in the range 0.75 ÷22 kW, to fulfill the 1E3 efficiency level according to typical performance and standard constraints. The proposed study has concerned TEFC ( totally Enclosed Fan-Cooled ), 400 V, 50 Hz, SI duty three phase squirrel-cage induction motors only. The motors' designs, with AI and Cu cage, have been optimized in order to reach the minimum efficiency level IE3 at lowest active material costs and satisfy the physical and performance constraints of the designs, which are the motor specifications. A suitable optimization procedure has been used which allowed to find the "best design" by chancing the geometric dimensions of the stator, rotor shape, the stator winding and the stack length. In order to guarantee the goodness and feasibility of the optimized designs, several constrains have been imposed.展开更多
Mixed-valence manganites have attracted considerable research focus in recent years not only because of the potential application of colossal magnetoresistance(CMR) in magnetic devices,but also because of many intrigu...Mixed-valence manganites have attracted considerable research focus in recent years not only because of the potential application of colossal magnetoresistance(CMR) in magnetic devices,but also because of many intriguing physical properties observed in these materials.Doping elements at A-site can alter the filling of 3d Mn band and the tolerance factor.Therefore the hole-and electron-doped CMR manganites exhibit a rich phase diagram.In addition,more theoretical and experimental results suggest that phase separation is a critical factor for the understanding of CMR phenomena.Recently,there is an increasing interest in the fabrication and investigation on manganite-based heterojunction,which demonstrated excellent rectifying property,large MR,and photovoltaic effect.展开更多
Dual-phase high-entropy alloys(DP-HEAs)with excellent strength-ductility combinations have attracted scientific interests.In the present study,the microstructures of AlCrCuFeNi3.0DP-HEA fabricated via selective laser ...Dual-phase high-entropy alloys(DP-HEAs)with excellent strength-ductility combinations have attracted scientific interests.In the present study,the microstructures of AlCrCuFeNi3.0DP-HEA fabricated via selective laser melting(SLM)are rationally adjusted and controlled.The mechanisms engendering the hierarchical microstructures are revealed.It is found that the AlCrCuFeNi3.0fabricated by SLM at the scanning speed of 400 mm s-1falls into the eutectic coupled zone,and increasing the scanning speed will make this composition deviate away from the eutectic coupled zone due to the increased cooling rate.The enrichment of Cr and Fe solutes with large growth restriction values ahead of the solid/liquid interface can develop a constitutional supercooling zone,thus facilitating the heterogeneous nucleation and nearequiaxed grain formation.The synergy of the near-eutectic DP nano-structures and near-equiaxed grains instead of columnar ones effectively suppresses cracking for the as-built DP-HEA.During the tensile deformation,the intergranular back stress hardening similar to the grain-boundary strengthening is discovered.Meanwhile,the near-eutectic microstructures comprised of soft face-centered cubic and hard ordered bodycentered cubic(B2)DP nano-structures lead to plastic strain incompatibility within grains,thus producing the intragranular back stress.The Cr-rich nano-precipitates inside the B2 phase are found to be sheared by dislocation gliding and can complement the back stress.Additionally,multiple strengthening mechanisms are physically evaluated,and the back stress strengthening contributes obviously to the high performances of the as-built DP-HEA.展开更多
Various studies have demonstrated that the foundation species genetic diversity can have direct effects that extend beyond the individual or population level, affecting the dependent communities. Additionally, these e...Various studies have demonstrated that the foundation species genetic diversity can have direct effects that extend beyond the individual or population level, affecting the dependent communities. Additionally, these effects may be indirectly extended to higher trophic levels throughout the entire community. Quercus castanea is an oak species with characteristics of foundation species beyond pre- senting a wide geographical distribution and being a dominant element of Mexican temperate forests. In this study, we analyzed the influence of population (He) and individual (HL) genetic diversity of Q. castanea on its canopy endophagous insect community and associated parasitoids. Specifically, we studied the composition, richness (S) and density of leaf-mining moths (Lepidoptera: Tischeridae, Citheraniidae), gall-forming wasps (Hymenoptera: Cynipidae), and canopy parasitoids of Q. castanea. We sampled 120 trees belonging to six populations (20/site) through the previously recognized gradi- ent of genetic diversity. In total, 22 endophagous insect species belonging to three orders (Hymenoptera, Lepidoptera, and Diptera) and 20 parasitoid species belonging to 13 families were identified. In general, we observed that the individual genetic diversity of the host plant (HL) has a significant positive effect on the S and density of the canopy endophagous insect communities. In contrast, He has a significant negative effect on the S of endophagous insects. Additionally, indirect effects of HL were observed, affecting the S and density of parasitoid insects. Our results suggest that genetic variation in foundation species can be one of the most important factors governing the dynamics of tritrophic interactions that involve oaks, herbivores, and parasitoids.展开更多
The design of non-noble metal heterogeneous catalyst with superior performance for selective hydrogenation or transfer hydrogenation of nitroarenes to amines is significant but challenging.Herein,a single-atom Fe supp...The design of non-noble metal heterogeneous catalyst with superior performance for selective hydrogenation or transfer hydrogenation of nitroarenes to amines is significant but challenging.Herein,a single-atom Fe supported by nitrogen-doped carbon(Fe_(1)/N-C)catalyst is reported.The Fe_(1)/N-C sample shows superior performances for the selective hydrogenation and transfer hydrogenation of nitrobenzene to aniline at different temperatures.Density functional theory(DFT)calculations show that the superior catalytic activity for the selective hydrogenation at lower temperatures could be attributed to the effective activation of the reactant and intermediates by the Fe_(1)/N-C.Moreover,the excellent performance of Fe_(1)/N-C for the selective transfer hydrogenation could be attributed to that the reaction energy barrier for dehydrogenation of isopropanol can be overcome by elevated temperatures.展开更多
Rationally designed heterostructures provide attractive prospects for energy storage electrodes by combining different active materials with distinct electrochemical properties.Herein,through a phase separation strate...Rationally designed heterostructures provide attractive prospects for energy storage electrodes by combining different active materials with distinct electrochemical properties.Herein,through a phase separation strategy,a heterostructure of SnO_(2) encapsulated by amorphous Nb_(2)O_(5) is spontaneously synthesized.Insertion-type anode Nb_(2)O_(5) outer shell,playing as reaction containers and fast ionic pathways,physically inhibits the Sn atoms’migration and enhances the reaction kinetics.Moreover,strong chemical interactions are found at the SnO_(2)/Nb_(2)O_(5) interfaces,which ensure the solid encapsulation of the SnO_(2) cores even after 500 cycles.When used for lithium-ion batteries,this heterostructured anode exhibits high cycling stability with a capacity of 626 mAhg^(-1) after 1000 cycles at 2Ag^(-1)(85% capacity retention)and good rate performance with the capacity of 340 mAhg^(-1) at 8Ag^(-1).展开更多
When a population structure is modelled as a square lattice,the cooperation may be improved for an evolutionary prisoner dilemma game or be inhibited for an evolutionary snowdrift game.In this work,we investigate coop...When a population structure is modelled as a square lattice,the cooperation may be improved for an evolutionary prisoner dilemma game or be inhibited for an evolutionary snowdrift game.In this work,we investigate cooperation in a population on a square lattice where the interaction among players contains both prisoner dilemma game and snowdrift game.The heterogeneity in interaction is introduced to the population in two different ways:the heterogenous character of interaction assigned to every player(HCP) or the heterogenous character of interaction assigned to every link between any two players(HCL).The resonant enhancement of cooperation in the case of HCP is observed while the resonant inhibition of cooperation in the case of HCL is prominent.The explanations on the enhancement or inhibition of cooperation are presented for these two cases.展开更多
基金supported by the National Natural Science Foundation of China (21573101)the Liaoning Provincial Natural Science Foundation(2014020107)+2 种基金the Program for Liaoning Excellent Talents in University (LJQ2014041)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry ([2013]1792)the Opening Project of Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, CAS,the Opening Project of State Key Laboratory of Catalysis, DICP, CAS (N-09-06)~~
文摘A series of WO3 samples with different crystalline phases were prepared by the thermal decomposition method from ammonium tungstate hydrate.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),X-ray photoelectron spectroscopy,and N2 adsorption-desorption were used to characterize the crystalline phase,morphology,particle size,chemical composition,and surface area of the WO3 samples.The formation of hexagonal(h-WO3) and monoclinic(m-WO3) crystal structures of WO3 at different temperatures or different times was confirmed by XRD.m-WO3 is formed at 600 ℃,while m-WO3 starts to transform into h-WO3 at 800℃.However,h-WO3,which forms at 800℃,may transform into m-WO3 by increasing the calcination temperature to 1000℃.SEM results indicate that m-WO3 particles exhibit a bulky shape with heavy aggregates,while h-WO3 particles exhibit a rod-like shape.Moreover,m-WO3 crystals are sporadically patched on the surface of the h-WO3 rod-like particles,resulting in the exposure of both m-WO3 and h-WO3 on the surface.It is observed that the monoclinic phase(m-WO3)/hexagonal phase(h-WO3) junction was fabricated by tuning the calcination temperature and calcination time.The relative ratios between m-WO3 and h-WO3 in the phase junction can readily be tailored by control of the calcination time.The photocatalytic activities of WO3 with different crystalline phases were evaluated by the photocatalytic degradation of rhodamine B as a model pollutant.A higher photocatalytic activity was observed in the WO3 sample with the m-WO3/h-WO3junction as compared with the sample with only m-WO3.The improvement of photocatalytic activity can be attributed to the reduction of the electron-hole recombination rate owing to the formation of the phase junction,whose presence has been confirmed by HRTEM and photoluminescence spectra.
文摘Metal-N_(4)(M-N_(4))macrocyclic complexes are interesting electrocatalysts due to their well-defined structures and rich molecular tuning.Among them,metal phthalocyanines have been widely studied for the carbon dioxide reduction reaction(CO_(2)RR)in heterogeneous systems and demonstrated good electrocatalytic performance.However,other complexes like metal corroles and metal porphyrins are much less explored,and often show inferior performances.In this study,three cobalt macrocyclic complexes,cobalt phthalocyanine,cobalt meso-tetraphenylporphyrin,and cobalt meso-triphenylcorrole(CoPc,CoTPP and CoTPC)are investigated in heterogeneous electrocatalysis of CO_(2)RR.Although CoPc/carbon nanotube(CNT)hybrid exhibits high electrocatalytic activity,CNT hybridization does not work for CoTPC and CoTPP that hold weak interactions with CNTs.By the drop-dry method with a high molecular loading of 5.4×10^(–7) mol cm^(–2),CoTPC and CoTPP could deliver appreciable electrode activities.Poly(4-vinylpyridine)(PVP)introduction is further demonstrated as a facile method to afford enhanced activities for CoTPP at low molecular loadings through enhancing molecule-substrate interactions.The partial current density of carbon monoxide for CoTPP+CNT/PVP is around 8 times higher than the sample without PVP at–0.67 V versus reversible hydrogen electrode.This work provides solutions to enhance the electrode activities of molecular electrocatalysts with weak substrate interactions in heterogeneous systems.
基金Supported by the State Key Development Program for Basic Research of China(2007CB210203)the Special Research Fund for the Doctoral Program of Higher Education of China(20050610013)
文摘A laboratory reactor was designed to test the effect of the interference instant of HY on the pyrolysis of pubescens.The time instant for intermediate species from pyrolysis to contact HY was controlled by varying the position of the catalyst bed relative to the pyrolytic cell.It was found that the effect of the interference instant was significant on the variation of different intermediate species,and the yield and quality of the products.The results also showed that,with the increase in the distance between the pyrolytic cell and the catalyst bed,the yield of liquid and relative content of the organics such as aldehyde,phenols,etc.,decreased,while the yield of residue and relative content of acetic acid increased.The deoxygenation of the intermediate species was favored when the catalyst exerted its performance on them immediately after their formation.
基金supported by the National Natural Science Foundation of China(21603134)Young Talent Fund of University Association for Science and Technology in Shaanxi,China(20150104)+1 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ2023)the Fundamental Research Funds for the Central Universities(GK201603032)~~
文摘Heterojunction fabrication is one of the most effective strategies for enhancing the photocatalytic performance of semiconductor photocatalysts. Here, TiO2(B)/anatase nanowires with interfacial heterostructures were prepared through a three-step synthesis method, including hydrothermal treatment, H+ exchange, and annealing. The phase structures of the nanowires in the bulk and on the surface during the annealing process were monitored by XRD and UV-Raman spectroscopy, respectively. SEM and TEM results indicate that the TiO2(B) nanowires partially collapse and transform into anatase during the annealing process and the heterophase junction structure is formed simultaneously. On the basis of the phase structure together with morphology data, a phase-transformation mechanism was proposed. Photocatalytic activity was evaluated by hydrogen production and pollutant-degradation assays. The optimized structure of the photocatalyst contains 24% TiO2(B) in the bulk and 100% anatase on the surface. The charge-carrier behavior during the photocatalytic process was investigated by photocurrent, electrochemical impedance spectroscopy(EIS), and photoluminescence(PL) spectroscopy, which revealed that the heterophase-junction structure in the bulk was responsible for the highly efficient charge separation and transportation, etc.; the anatase on the surface took control of the high surface-reaction activity.
文摘Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide in- terest not only for the fundamental research, but also for the application of next generation electronic and optoelectronic devices. Herein, we report a successful two-step chemical vapor deposition strategy to construct vertically stacked van der Waals epitaxial In2Se3/MoSe2 heterostructures. Transmission electron microscopy characterization reveals clearly that the In2Se3 has well-aligned lattice orientation with the substrate of monolayer MoSe2. Due to the interaction between the In2Se3 and MoSe2 layers, the heterostructure shows the quench- ing and red-shift of photoluminescence. Moreover, the current rectification behavior and photovoltaic effect can be observed from the heterostructure, which is attributed to the unique band structure alignment of the heterostructure, and is further confirmed by Kevin probe force microscopy measurement. The synthesis approach via van der Waals epitaxy in this work can expand the way to fabricate a variety of two-dimensional heterostructures for potential applications in electronic and optoelectronic devices.
文摘Results of researches on study of the kinetics and isomerization mechanism of the alkyladamantanes in the presence of the heterogeneous catalysts of the acid type are considered as detection and experimental proof of a new intramolecular rearrangement of the carbcations bridged alicyclic hydrocarbons--2,4-moving of the methyl groups (β-methyl shift). The proof of realization of such rearrangement is direct and primary formation 1,4-dimethyladamantane from 1,2-dimethyladamatane, passing a formation stage of the thermodynamic much stable 1,3-dimethyladamantane; direct formation 1,3,6-trimethyladamantane from 1,3,4-trimethyladamantane, excepting a formation stage 1,3.5-trimethyladamantane, and also other isomers which formation is impossible to explain by means of known 1,2-methyl shift (a-methyl shift).
文摘1. Introduction Zeolites are widely used in acid heterogeneous catalysis [1, 2]. Due to the unique physical and chemical properties ofzeolites, they are widely used in commercial catalytic processes, such as fluidized catalytic cracking, hydrocracking, methanol conversion to gasoline or olefins, ethylbenzene production, xylene isomerization, aromatics hydrogenation [3-9]. Acidity, high thermal stability, and shape selectivity determine the use of zeolites as catalysts in reaction processes through acid mechanisms [ 10].
文摘Solar‐driven CO_(2)conversion to precious fossil fuels has been proved to become a potential way to decrease CO_(2)with producing renewable fuels,which mainly relies on photocatalysts with efficient charge separation.In this work,a metal free heterostructure of covalent triazine framework(CTF)and graphite carbon nitride(g‐C_(3)N_(4),abbreviated as CN)is applied in the CO_(2)photoreduction for the first time.Detailed characterization methods such as photoluminescence(PL)and time‐resolved PL(TR‐PL)decay are utilized to reveal the photo‐induced carries separating process on g‐C_(3)N_(4)/CTF(CN/CTF)heterostructure.The introduced CTF demonstrated a great boosting photocatalytic activity for CN,bringing about the transform rates of CO_(2)to CO reaching 151.1μmol/(g·h)with a 30 h stabilization time,while negligible CH_(4)was detected.The optimal CN/CTF heterostructure could more efficiently separate charges with a lower probability of recombination under visible light irradiation,which made the photoreduction efficiency of CO_(2)to CO be 25.5 and 2.5 times higher than that of CTF and CN,respectively.This investigation is expected to offer a new thought for fabricating high‐efficiency photocatalyst without metal in solar‐energy‐driven CO_(2)reduction.
文摘The IR spectroscopic data indicate the tautomeric transformations of typical aprotonic organic fluids such as methane halides with gross formulas CHX3 (X = Cl, Br), CH2X2 (X = CI, Br, I) and CCl4 at normal conditions. These transformations lead to the appearance in molecules of activated hydrogen atoms similar in the spectral behaviour to the bounded proton. The classical analysis of IR bands in 5000-600 cm^-1 region, for studied samples and their deuterated derivatives, proves the existence in the presented organic fluids of hydrogen and dihydrogen bonds. This bonding promotes the formation of supramolecular structure in methane halides. The mechanism of unusual binding in liquid phase in terms of common knowledge for the basic chemical properties of the examined compounds is discussed.
基金supported by the National Key Research and Development Program of China [grant number2018YFC1506903]the National Natural Science Foundation of China [grant number 41776031]+2 种基金the Guangdong Natural Science Foundation [grant number 2015A030313796]the program for scientific research start-up funds of Guangdong Ocean Universitythe Foundation for Returned Scholars of the Ministry of Education of China
文摘The correlation between summertime Nino3.4 index and western North Pacific(WNP)summer monsoon index has strikingly enhanced since the early 1990 s,with nonsignificant correlation before the early1990 s but significant correlation afterward.This observed interdecadal change around the 1990 s may be associated with more frequent occurrences of central Pacific(CP)El Nino and the interdecadal changes in ENSO-associated SST anomalies.During the post-1990 s period(the pre-1990 s period),highly noticeable tropical Atlantic(Indian)Ocean SST anomalies tend to co-occur with the summertime Nino3.4 SST anomalies.The concurrent tropical Atlantic(Indian)Ocean SST anomalies could constructively reinforce(destructively mitigate)the WNP monsoon circulation anomalies induced by the summertime Nino3.4 SST,thus boosting(muting)the correlation between summertime Nino3.4 SST and WNP monsoon.In addition,the faster decaying pace of preceding-winter El Nino after the 1990 s,which may have been mainly induced by the influences from the spring tropical North Atlantic SST anomalies,could also have contributed to the enhanced correlation between the summertime Nino3.4 index and WNP monsoon.These results suggest that the enhanced influences from the tropical Atlantic SST may have triggered the intensified correlation between summertime ENSO and WNP monsoon since the early 1990 s.
文摘Vapor-liquid phase equilibrium data including composition,densities,molar volume and equilibrium constant of isobutanol in supercritical carbon dioxide from 313.2K to 353.2K were measured in a variable-volume visual cell.The properties of critical point were obtained by extrapolation.The results showed that critical temperature,critical pressure and critical compressibility factor of CO2-isobutanol system decreased with the increase of critical CO2 content.The phase equilibrium model was established by Peng-Robinson equation of state and van der Waals-2 mixing regulation,and model parameters were determined by optimization calculation of nonlinear least square method.The correlation between calculated values and the experimental data showed good agreement.
文摘The aim of this study was to design three-phase induction motors with aluminum and copper cage, in the range 0.75 ÷22 kW, to fulfill the 1E3 efficiency level according to typical performance and standard constraints. The proposed study has concerned TEFC ( totally Enclosed Fan-Cooled ), 400 V, 50 Hz, SI duty three phase squirrel-cage induction motors only. The motors' designs, with AI and Cu cage, have been optimized in order to reach the minimum efficiency level IE3 at lowest active material costs and satisfy the physical and performance constraints of the designs, which are the motor specifications. A suitable optimization procedure has been used which allowed to find the "best design" by chancing the geometric dimensions of the stator, rotor shape, the stator winding and the stack length. In order to guarantee the goodness and feasibility of the optimized designs, several constrains have been imposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.10774146,10974205,10904150 and 11274313)Anhui Provincial Natural Science Foundation(Grant No.1208085MA06)+1 种基金Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences' Large-scale Scientific Facility(Grant No. U1232138)support by the National Key Basic Research(Grant No. 2011CBA00111)
文摘Mixed-valence manganites have attracted considerable research focus in recent years not only because of the potential application of colossal magnetoresistance(CMR) in magnetic devices,but also because of many intriguing physical properties observed in these materials.Doping elements at A-site can alter the filling of 3d Mn band and the tolerance factor.Therefore the hole-and electron-doped CMR manganites exhibit a rich phase diagram.In addition,more theoretical and experimental results suggest that phase separation is a critical factor for the understanding of CMR phenomena.Recently,there is an increasing interest in the fabrication and investigation on manganite-based heterojunction,which demonstrated excellent rectifying property,large MR,and photovoltaic effect.
基金supported by the Pre-research Fund Project of Ministry of Equipment and Development of China(61409230301)the Fundamental Research Funds for the Central Universities(2019kfyXMPY005 and 2019kfyXKJC042)。
文摘Dual-phase high-entropy alloys(DP-HEAs)with excellent strength-ductility combinations have attracted scientific interests.In the present study,the microstructures of AlCrCuFeNi3.0DP-HEA fabricated via selective laser melting(SLM)are rationally adjusted and controlled.The mechanisms engendering the hierarchical microstructures are revealed.It is found that the AlCrCuFeNi3.0fabricated by SLM at the scanning speed of 400 mm s-1falls into the eutectic coupled zone,and increasing the scanning speed will make this composition deviate away from the eutectic coupled zone due to the increased cooling rate.The enrichment of Cr and Fe solutes with large growth restriction values ahead of the solid/liquid interface can develop a constitutional supercooling zone,thus facilitating the heterogeneous nucleation and nearequiaxed grain formation.The synergy of the near-eutectic DP nano-structures and near-equiaxed grains instead of columnar ones effectively suppresses cracking for the as-built DP-HEA.During the tensile deformation,the intergranular back stress hardening similar to the grain-boundary strengthening is discovered.Meanwhile,the near-eutectic microstructures comprised of soft face-centered cubic and hard ordered bodycentered cubic(B2)DP nano-structures lead to plastic strain incompatibility within grains,thus producing the intragranular back stress.The Cr-rich nano-precipitates inside the B2 phase are found to be sheared by dislocation gliding and can complement the back stress.Additionally,multiple strengthening mechanisms are physically evaluated,and the back stress strengthening contributes obviously to the high performances of the as-built DP-HEA.
文摘Various studies have demonstrated that the foundation species genetic diversity can have direct effects that extend beyond the individual or population level, affecting the dependent communities. Additionally, these effects may be indirectly extended to higher trophic levels throughout the entire community. Quercus castanea is an oak species with characteristics of foundation species beyond pre- senting a wide geographical distribution and being a dominant element of Mexican temperate forests. In this study, we analyzed the influence of population (He) and individual (HL) genetic diversity of Q. castanea on its canopy endophagous insect community and associated parasitoids. Specifically, we studied the composition, richness (S) and density of leaf-mining moths (Lepidoptera: Tischeridae, Citheraniidae), gall-forming wasps (Hymenoptera: Cynipidae), and canopy parasitoids of Q. castanea. We sampled 120 trees belonging to six populations (20/site) through the previously recognized gradi- ent of genetic diversity. In total, 22 endophagous insect species belonging to three orders (Hymenoptera, Lepidoptera, and Diptera) and 20 parasitoid species belonging to 13 families were identified. In general, we observed that the individual genetic diversity of the host plant (HL) has a significant positive effect on the S and density of the canopy endophagous insect communities. In contrast, He has a significant negative effect on the S of endophagous insects. Additionally, indirect effects of HL were observed, affecting the S and density of parasitoid insects. Our results suggest that genetic variation in foundation species can be one of the most important factors governing the dynamics of tritrophic interactions that involve oaks, herbivores, and parasitoids.
基金the National Key R&D Program of China(2018YFA0702003)the National Natural Science Foundation of China(21890383,21671117,21871159 and21901135)the Science and Technology Key Project of Guangdong Province of China(2020B010188002)。
文摘The design of non-noble metal heterogeneous catalyst with superior performance for selective hydrogenation or transfer hydrogenation of nitroarenes to amines is significant but challenging.Herein,a single-atom Fe supported by nitrogen-doped carbon(Fe_(1)/N-C)catalyst is reported.The Fe_(1)/N-C sample shows superior performances for the selective hydrogenation and transfer hydrogenation of nitrobenzene to aniline at different temperatures.Density functional theory(DFT)calculations show that the superior catalytic activity for the selective hydrogenation at lower temperatures could be attributed to the effective activation of the reactant and intermediates by the Fe_(1)/N-C.Moreover,the excellent performance of Fe_(1)/N-C for the selective transfer hydrogenation could be attributed to that the reaction energy barrier for dehydrogenation of isopropanol can be overcome by elevated temperatures.
基金supported by China Postdoctoral Science Foundation(2020M671242 and 2021T140688)the Special Research Assistant program of CASthe Super Postdoctoral Fellow Program of Shanghai。
文摘Rationally designed heterostructures provide attractive prospects for energy storage electrodes by combining different active materials with distinct electrochemical properties.Herein,through a phase separation strategy,a heterostructure of SnO_(2) encapsulated by amorphous Nb_(2)O_(5) is spontaneously synthesized.Insertion-type anode Nb_(2)O_(5) outer shell,playing as reaction containers and fast ionic pathways,physically inhibits the Sn atoms’migration and enhances the reaction kinetics.Moreover,strong chemical interactions are found at the SnO_(2)/Nb_(2)O_(5) interfaces,which ensure the solid encapsulation of the SnO_(2) cores even after 500 cycles.When used for lithium-ion batteries,this heterostructured anode exhibits high cycling stability with a capacity of 626 mAhg^(-1) after 1000 cycles at 2Ag^(-1)(85% capacity retention)and good rate performance with the capacity of 340 mAhg^(-1) at 8Ag^(-1).
基金Supported by Natural Science Foundation of China under Grant No. 11147112
文摘When a population structure is modelled as a square lattice,the cooperation may be improved for an evolutionary prisoner dilemma game or be inhibited for an evolutionary snowdrift game.In this work,we investigate cooperation in a population on a square lattice where the interaction among players contains both prisoner dilemma game and snowdrift game.The heterogeneity in interaction is introduced to the population in two different ways:the heterogenous character of interaction assigned to every player(HCP) or the heterogenous character of interaction assigned to every link between any two players(HCL).The resonant enhancement of cooperation in the case of HCP is observed while the resonant inhibition of cooperation in the case of HCL is prominent.The explanations on the enhancement or inhibition of cooperation are presented for these two cases.