The joining of AZ31B Mg alloy to 6061 Al alloy was investigated at different joining temperatures by vacuum diffusion bonding method. The microstructures of Mg/Al dissimilar joints were studied by means of optical mic...The joining of AZ31B Mg alloy to 6061 Al alloy was investigated at different joining temperatures by vacuum diffusion bonding method. The microstructures of Mg/Al dissimilar joints were studied by means of optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The results show that the thickness of each layer in the diffusion zone increases with the increase of joining temperature, and the microstructure changes obviously. At joining temperature of 440 °C, the diffusion zone is composed of Mg2Al3 layer and Mg17Al12 layer. At joining temperatures of 460 and 480 °C, the diffusion zone is composed of Mg2Al3 layer, Mg17Al12 layer, eutectic layer of Mg17Al12 and Mg-based solid solution. The width of high-hardness zone in the joint increases with increasing joining temperature, and the micro-hardnesses at different locations in the diffusion zone are significantly different. The joining temperature of 440 °C offers the highest tensile strength of 37 MPa, and the corresponding joint exhibits brittle fracture at the intermetallic compound layer of Mg17Al12.展开更多
A novel joining method,double-stage diffusion-brazing of an AZ31 magnesium alloy and a 304L austenitic stainless steel,was carried out using a pure copper interlayer.The solid-state diffusion bonding of 304L to copper...A novel joining method,double-stage diffusion-brazing of an AZ31 magnesium alloy and a 304L austenitic stainless steel,was carried out using a pure copper interlayer.The solid-state diffusion bonding of 304L to copper was conducted at 850 ℃ for 20 min followed by brazing to AZ31 at 520 ℃ and 495 ℃ for various time.Microstructural characteristics of the diffusion-brazed joints were investigated in detail.A defect free interface of Fe-Cu diffusion area appeared between the Cu alloy and the 304L steel.Cu-Mg reaction products were formed between AZ31 and Cu alloys.A layered structure including AZ31/Cu-Mg compounds/Cu/Fe-Cu diffusion layer/304L was present in the joint.With time prolonging,the reduction in the width of Cu layer was balanced by the increase in the width of Cu-Mg compounds zone.Microhardness peaks in the zone between AZ31 and Cu layer were attributed to the formation of Mg-Cu compounds in this zone.展开更多
Direct friction welding of Ti Al alloy to 40 Cr steel rods was conducted, and the microstructure and mechanical properties of the resultant joints in as-welded and post-weld heat treatment(PWHT) states were investig...Direct friction welding of Ti Al alloy to 40 Cr steel rods was conducted, and the microstructure and mechanical properties of the resultant joints in as-welded and post-weld heat treatment(PWHT) states were investigated. The martensitic transformation occurred and brittle Ti C phase formed near the interface due to C agglomeration, which degraded the joint strength and increased the microhardness at the interface in as-welded state. Feathery and Widmanstatten structure generated near the interface on Ti Al alloy side. After PWHT at 580 °C and 630 °C for 2 h, the sorbite formed and C dispersed at the interface, leading to the increase of the joint strength from 86 MPa in as-welded state to 395 MPa and 330 MPa, respectively. The heat-treated specimen fractured with quasi-cleavage features through the zone 1 mm away from the interface on TiA l alloy side, but the as-welded specimen failed through the interface.展开更多
According to the differences in melting point between aluminum alloy and steel, 6013-T4 aluminum alloy was joined to galvanized steel by large spot Nd:YAG laser + MIG arc hybrid brazing-fusion welding with ER4043(A...According to the differences in melting point between aluminum alloy and steel, 6013-T4 aluminum alloy was joined to galvanized steel by large spot Nd:YAG laser + MIG arc hybrid brazing-fusion welding with ER4043(AlSi5) filler wire. The microstructures and mechanical properties of the brazed-fusion welded joint were investigated. The joint is divided into two parts of fusion weld and brazed seam. There is a zinc-rich zone at fusion weld toe, which consists of α(Al)-Zn solid solution and Al-Zn eutectic. The brazed seam is the Fe-Al intermetallic compounds (IMCs) layer of 2-4μm in thickness, and the IMCs include FeAl2, Fe2Al5 and Fe4Al13. FeAl2 and Fe2Al5 are located in the compact reaction layer near the steel side, and Fe4Al13 with tongue shape or sawtooth shape grows towards the fusion weld. The tensile strength of the joint firstly increases and then decreases as the welding current and laser power increase, the highest tensile strength can be up to 247.3 MPa, and the fracture usually occurs at fusion zone of the fusion weld. The hardness is the highest at the brazed seam because of hard Fe-Al IMCs, and gradually decreases along the fusion weld and galvanized steel, respectively.展开更多
Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld...Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld was welded to a stainless steel pipe with laser spot welding process.The microstructure of the welds was examined with an optical microscope and the elemental distribution in the welds was measured by electron probe microanalysis(EPMA).The results show that TiC compounds dispersively distribute in the NiTi SMA TIG weld.However,the amount of TiC compounds greatly decreases around the fusion boundary of the laser spot weld between the NiTi SMA and stainless steel.Mutual diffusion between NiTi shape memory alloy and stainless steel happen within a short distance near the fusion boundary,and intermetallic compounds such as Ni3Ti+(Fe,Ni)Ti appear around the fusion boundary.展开更多
基金Project (51075214) supported by the National Natural Science Foundation of China
文摘The joining of AZ31B Mg alloy to 6061 Al alloy was investigated at different joining temperatures by vacuum diffusion bonding method. The microstructures of Mg/Al dissimilar joints were studied by means of optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The results show that the thickness of each layer in the diffusion zone increases with the increase of joining temperature, and the microstructure changes obviously. At joining temperature of 440 °C, the diffusion zone is composed of Mg2Al3 layer and Mg17Al12 layer. At joining temperatures of 460 and 480 °C, the diffusion zone is composed of Mg2Al3 layer, Mg17Al12 layer, eutectic layer of Mg17Al12 and Mg-based solid solution. The width of high-hardness zone in the joint increases with increasing joining temperature, and the micro-hardnesses at different locations in the diffusion zone are significantly different. The joining temperature of 440 °C offers the highest tensile strength of 37 MPa, and the corresponding joint exhibits brittle fracture at the intermetallic compound layer of Mg17Al12.
基金Project(51205428) supported by the National Natural Science Foundation of ChinaProject(CDJRC10130011) supported by the Fundamental Research Funds for the Central Universities,China
文摘A novel joining method,double-stage diffusion-brazing of an AZ31 magnesium alloy and a 304L austenitic stainless steel,was carried out using a pure copper interlayer.The solid-state diffusion bonding of 304L to copper was conducted at 850 ℃ for 20 min followed by brazing to AZ31 at 520 ℃ and 495 ℃ for various time.Microstructural characteristics of the diffusion-brazed joints were investigated in detail.A defect free interface of Fe-Cu diffusion area appeared between the Cu alloy and the 304L steel.Cu-Mg reaction products were formed between AZ31 and Cu alloys.A layered structure including AZ31/Cu-Mg compounds/Cu/Fe-Cu diffusion layer/304L was present in the joint.With time prolonging,the reduction in the width of Cu layer was balanced by the increase in the width of Cu-Mg compounds zone.Microhardness peaks in the zone between AZ31 and Cu layer were attributed to the formation of Mg-Cu compounds in this zone.
基金Project(51374048)supported by the National Natural Science Foundation of ChinaProject(2011CB013402)supported by the National Basic Research Program of ChinaProject(AWPT-Z01)supported by the State Key Laboratory of Advanced Welding and Joining,China
文摘Direct friction welding of Ti Al alloy to 40 Cr steel rods was conducted, and the microstructure and mechanical properties of the resultant joints in as-welded and post-weld heat treatment(PWHT) states were investigated. The martensitic transformation occurred and brittle Ti C phase formed near the interface due to C agglomeration, which degraded the joint strength and increased the microhardness at the interface in as-welded state. Feathery and Widmanstatten structure generated near the interface on Ti Al alloy side. After PWHT at 580 °C and 630 °C for 2 h, the sorbite formed and C dispersed at the interface, leading to the increase of the joint strength from 86 MPa in as-welded state to 395 MPa and 330 MPa, respectively. The heat-treated specimen fractured with quasi-cleavage features through the zone 1 mm away from the interface on TiA l alloy side, but the as-welded specimen failed through the interface.
基金Project (50905099) supported by the National Natural Science Foundation of ChinaProject (20090131120027) supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘According to the differences in melting point between aluminum alloy and steel, 6013-T4 aluminum alloy was joined to galvanized steel by large spot Nd:YAG laser + MIG arc hybrid brazing-fusion welding with ER4043(AlSi5) filler wire. The microstructures and mechanical properties of the brazed-fusion welded joint were investigated. The joint is divided into two parts of fusion weld and brazed seam. There is a zinc-rich zone at fusion weld toe, which consists of α(Al)-Zn solid solution and Al-Zn eutectic. The brazed seam is the Fe-Al intermetallic compounds (IMCs) layer of 2-4μm in thickness, and the IMCs include FeAl2, Fe2Al5 and Fe4Al13. FeAl2 and Fe2Al5 are located in the compact reaction layer near the steel side, and Fe4Al13 with tongue shape or sawtooth shape grows towards the fusion weld. The tensile strength of the joint firstly increases and then decreases as the welding current and laser power increase, the highest tensile strength can be up to 247.3 MPa, and the fracture usually occurs at fusion zone of the fusion weld. The hardness is the highest at the brazed seam because of hard Fe-Al IMCs, and gradually decreases along the fusion weld and galvanized steel, respectively.
基金Project(50974046/E041607) supported by the National Natural Science Foundation of China
文摘Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld was welded to a stainless steel pipe with laser spot welding process.The microstructure of the welds was examined with an optical microscope and the elemental distribution in the welds was measured by electron probe microanalysis(EPMA).The results show that TiC compounds dispersively distribute in the NiTi SMA TIG weld.However,the amount of TiC compounds greatly decreases around the fusion boundary of the laser spot weld between the NiTi SMA and stainless steel.Mutual diffusion between NiTi shape memory alloy and stainless steel happen within a short distance near the fusion boundary,and intermetallic compounds such as Ni3Ti+(Fe,Ni)Ti appear around the fusion boundary.