Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to co...Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to conduct computational experiments of historic significance, these systems are presently difficult to program. The users, who are domain experts rather than computer experts, prefer to use programming models closer to their domains (e.g., physics and biology) rather than MPI and OpenME This has led the development of domain-specific programming that provides domain-specific programming interfaces but abstracts away some performance-critical architecture details. Based on experience in designing large-scale computing systems, a hybrid programming framework for scientific computing on heterogeneous architectures is proposed in this work. Its design philosophy is to provide a collaborative mechanism for domain experts and computer experts so that both domain-specific knowledge and performance-critical architecture details can be adequately exploited. Two real-world scientific applications have been evaluated on TH-IA, a peta-scale CPU-GPU heterogeneous system that is currently the 5th fastest supercomputer in the world. The experimental results show that the proposed framework is well suited for developing large-scale scientific computing applications on peta-scale heterogeneous CPU/GPU systems.展开更多
Introduced species may outcompete or hybridize with native species, resulting in the loss of native biodiversity or even alteration of ecosystem processes. In this study, we reported an alien distromatic Ulva species,...Introduced species may outcompete or hybridize with native species, resulting in the loss of native biodiversity or even alteration of ecosystem processes. In this study, we reported an alien distromatic Ulva species, which was found in an embayment(Holly Pond) connected with Long Island Sound, USA. The morphological and anatomical observations in combination with molecular data were used for its identification to species. Anatomy of collected specimens showed that the cell shape in rhizoidal and basal regions was round and the marginal teeth along the basal and median region were not found. These characteristics were primarily identical to the diagnostic characteristics of Ulva laetevirens Areschoug(Chlorophyta). The plastid-encoding tufA and nucleus-encoding ITS1 were used for its molecular identification. Phylogenetic analysis for the tufA gene placed the specimens from Holly Pond in a well-supported clade along with published sequences of U. laetevirens identified early without any sequence divergence. In ITS tree, the sample also formed well-supported clades with the sequences of U. laetevirens with an estimated sequence divergence among the taxa in these clades as low as 1%. These findings confirmed the morpho-anatomical conclusion. Native to Australia, this species was reported in several countries along the Mediterranean coast after the late of 1990 s. This is the first time that U. laetevirens is found in the northeast coast of United States and the second record for Atlantic North America.展开更多
The nonlinear predator-prey singularly perturbed Robin initial boundary value problems for reaction diffusion systems were considered. Under suitable conditions, using theory of differential inequalities the existence...The nonlinear predator-prey singularly perturbed Robin initial boundary value problems for reaction diffusion systems were considered. Under suitable conditions, using theory of differential inequalities the existence and asymptotic behavior of solution for initial boundary value problems were studied.展开更多
In this paper we investigate the formation of singularities of hyperbolic systems.Employing the method of parametric coordinates and the existence of the solution of the blow-up system, we prove that the blow-up of cl...In this paper we investigate the formation of singularities of hyperbolic systems.Employing the method of parametric coordinates and the existence of the solution of the blow-up system, we prove that the blow-up of classic solutions is due to the envelope of characteristics of the same family, analyze the geometric properties of the envelope of characteristics and estimate the blowup rates of the solution precisely.展开更多
In this paper we give an appropriate energy equation considering the diffusion and the energy production contributions of species for a complex coupled system with chemical reaction. It is shown that the contribution ...In this paper we give an appropriate energy equation considering the diffusion and the energy production contributions of species for a complex coupled system with chemical reaction. It is shown that the contribution of the mass diffusion on the internal energy is the same whether it is introduced by the mass flow through the outer boundary or by the inner chemical reaction. In addition, the diffusion is a purely irreversible process and does not produce reversible entropy or entropy flow. Based on this theory a new entropy production rate equation is derived for the coupled thermal diffusive chemical heterogeneous system. The evolution equations of the heat conduction and the mass diffusion derived from this theory are fully consistent with the Fourier and Fick's laws.展开更多
基金Project(61170049) supported by the National Natural Science Foundation of ChinaProject(2012AA010903) supported by the National High Technology Research and Development Program of China
文摘Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to conduct computational experiments of historic significance, these systems are presently difficult to program. The users, who are domain experts rather than computer experts, prefer to use programming models closer to their domains (e.g., physics and biology) rather than MPI and OpenME This has led the development of domain-specific programming that provides domain-specific programming interfaces but abstracts away some performance-critical architecture details. Based on experience in designing large-scale computing systems, a hybrid programming framework for scientific computing on heterogeneous architectures is proposed in this work. Its design philosophy is to provide a collaborative mechanism for domain experts and computer experts so that both domain-specific knowledge and performance-critical architecture details can be adequately exploited. Two real-world scientific applications have been evaluated on TH-IA, a peta-scale CPU-GPU heterogeneous system that is currently the 5th fastest supercomputer in the world. The experimental results show that the proposed framework is well suited for developing large-scale scientific computing applications on peta-scale heterogeneous CPU/GPU systems.
基金partly funded by the China Scholarship Councilsupports of this work by the Connecticut Sea Grant College Program (NA10OAR4170095+1 种基金 CT Sea Grant R/A38)from the Perkin Elmer research fund at the University of Connecticut, Perkin Elmer Analytical Division of E, G & G, Wellesley, MA, USA
文摘Introduced species may outcompete or hybridize with native species, resulting in the loss of native biodiversity or even alteration of ecosystem processes. In this study, we reported an alien distromatic Ulva species, which was found in an embayment(Holly Pond) connected with Long Island Sound, USA. The morphological and anatomical observations in combination with molecular data were used for its identification to species. Anatomy of collected specimens showed that the cell shape in rhizoidal and basal regions was round and the marginal teeth along the basal and median region were not found. These characteristics were primarily identical to the diagnostic characteristics of Ulva laetevirens Areschoug(Chlorophyta). The plastid-encoding tufA and nucleus-encoding ITS1 were used for its molecular identification. Phylogenetic analysis for the tufA gene placed the specimens from Holly Pond in a well-supported clade along with published sequences of U. laetevirens identified early without any sequence divergence. In ITS tree, the sample also formed well-supported clades with the sequences of U. laetevirens with an estimated sequence divergence among the taxa in these clades as low as 1%. These findings confirmed the morpho-anatomical conclusion. Native to Australia, this species was reported in several countries along the Mediterranean coast after the late of 1990 s. This is the first time that U. laetevirens is found in the northeast coast of United States and the second record for Atlantic North America.
基金Important Study Project of the NationalNatural Science F oundation of China( No.90 2 110 0 4),and"Hun-dred Talents Project"of Chinese Academy of Sciences
文摘The nonlinear predator-prey singularly perturbed Robin initial boundary value problems for reaction diffusion systems were considered. Under suitable conditions, using theory of differential inequalities the existence and asymptotic behavior of solution for initial boundary value problems were studied.
文摘In this paper we investigate the formation of singularities of hyperbolic systems.Employing the method of parametric coordinates and the existence of the solution of the blow-up system, we prove that the blow-up of classic solutions is due to the envelope of characteristics of the same family, analyze the geometric properties of the envelope of characteristics and estimate the blowup rates of the solution precisely.
文摘In this paper we give an appropriate energy equation considering the diffusion and the energy production contributions of species for a complex coupled system with chemical reaction. It is shown that the contribution of the mass diffusion on the internal energy is the same whether it is introduced by the mass flow through the outer boundary or by the inner chemical reaction. In addition, the diffusion is a purely irreversible process and does not produce reversible entropy or entropy flow. Based on this theory a new entropy production rate equation is derived for the coupled thermal diffusive chemical heterogeneous system. The evolution equations of the heat conduction and the mass diffusion derived from this theory are fully consistent with the Fourier and Fick's laws.