期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于大数据的异网覆盖智能测评方案 被引量:4
1
作者 许盛宏 宫云平 姚彦强 《移动通信》 2020年第9期92-96,共5页
为了解决目前异网覆盖测评不准确、工作量大、效率低的问题,通过空间聚合、密度聚类等算法研究了异网覆盖智能测评方案,通过对4G异网覆盖测量数据分析了异网所有频点MR的监测、MR的最优RSRP提取、异网覆盖栅格指标的生成、异网问题区域... 为了解决目前异网覆盖测评不准确、工作量大、效率低的问题,通过空间聚合、密度聚类等算法研究了异网覆盖智能测评方案,通过对4G异网覆盖测量数据分析了异网所有频点MR的监测、MR的最优RSRP提取、异网覆盖栅格指标的生成、异网问题区域的识别等关键技术,实验证实了异网覆盖智能测评的高度准确性及较高应用价值。 展开更多
关键词 4G 大数据 异网覆盖 智能测评
下载PDF
Two-dimensional numerical manifold method with multilayer covers 被引量:6
2
作者 LIU ZhiJun ZHENG Hong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第4期515-530,共16页
In order to reach the best numerical properties with the numerical manifold method(NMM),uniform finite element meshes are always favorite while constructing mathematical covers,where all the elements are congruent.In ... In order to reach the best numerical properties with the numerical manifold method(NMM),uniform finite element meshes are always favorite while constructing mathematical covers,where all the elements are congruent.In the presence of steep gradients or strong singularities,in principle,the locally-defined special functions can be added into the NMM space by means of the partition of unity,but they are not available to those complex problems with heterogeneity or nonlinearity,necessitating local refinement on uniform meshes.This is believed to be one of the most important open issues in NMM.In this study multilayer covers are proposed to solve this issue.In addition to the first layer cover which is the global cover and covers the whole problem domain,the second and higher layer covers with smaller elements,called local covers,are used to cover those local regions with steep gradients or strong singularities.The global cover and the local covers have their own partition of unity,and they all participate in the approximation to the solution.Being advantageous over the existing procedures,the proposed approach is easy to deal with any arbitrary-layer hanging nodes with no need to construct super-elements with variable number of edge nodes or introduce the Lagrange multipliers to enforce the continuity between small and big elements.With no limitation to cover layers,meanwhile,the creation of an even error distribution over the whole problem domain is significantly facilitated.Some typical examples with steep gradients or strong singularities are analyzed to demonstrate the capacity of the proposed approach. 展开更多
关键词 numerical manifold method finite element method COVERS hanging nodes structured local refinement short cracks
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部