期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
移动电话对固定电话异质分流分析
1
作者 胡世良 《邮电经济》 2003年第3期24-27,共4页
关键词 移动电话 固定电话 异质分流 话务量 电信市场
下载PDF
移动电话对固定电话的异质替代分流分析
2
作者 陶章华 《电信决策研究动态》 2003年第12期10-15,共6页
关键词 移动电话 固定电话 异质替代分流 话务量 资费
下载PDF
Investigating the charge transfer mechanism of ZnSe QD/COF S-scheme photocatalyst for H_(2)O_(2) production by using femtosecond transient absorption spectroscopy
3
作者 Yanyan Zhao Chunyan Yang +4 位作者 Shumin Zhang Guotai Sun Bicheng Zhu Linxi Wang Jianjun Zhang 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期258-269,共12页
Hydrogen peroxide(H_(2)O_(2))has gained widespread attention as a versatile oxidant and a mild disin-fectant.Here,an electrostatic self-assembly method is applied to couple ZnSe quantum dots(QDs)with a flower-like cov... Hydrogen peroxide(H_(2)O_(2))has gained widespread attention as a versatile oxidant and a mild disin-fectant.Here,an electrostatic self-assembly method is applied to couple ZnSe quantum dots(QDs)with a flower-like covalent organic framework(COF)to form a step-scheme(S-scheme)photocata-lyst for H_(2)O_(2)production.The as-prepared S-scheme photocatalyst exhibits a broad light absorption range with an edge at 810 nm owing to the synergistic effect between the ZnSe QDs and COF.The S-scheme charge-carrier transfer mechanism is validated by performing Fermi level calculations and in-situ X-ray photoelectron and femtosecond transient absorption spectroscopies.Photolumi-nescence,time-resolved photoluminescence,photocurrent response,electrochemical impedance spectroscopy,and electron paramagnetic resonance results show that the S-scheme heterojunction not only promotes charge carrier separation but also boosts the redox ability,resulting in enhanced photocatalytic performance.Remarkably,a 10%-ZnSe QD/COF has excellent photocatalytic H_(2)O_(2)-production activity,and the optimal S-scheme composite with ethanol as the hole scavenger yields a H_(2)O_(2)-production rate of 1895 mol g^(-1)h^(-1).This study presents an example of a high-performance organic/inorganic S-scheme photocatalyst for H_(2)O_(2)production. 展开更多
关键词 ZnSe quantum dot Covalent organic framework S-scheme heterojunction Carrier migration and separation H_(2)O_(2) production
下载PDF
中国固网运营商2005年如何“破局”?
4
作者 陶章华 徐静 《通讯世界》 2005年第2期44-46,共3页
2005年中国固网运营商,除了收入增长面临着前所未有的艰难之外,同时还面临着一些重大的政策风险与机遇。2005年最大的政策风险与机遇应该是3G牌照。
关键词 中国 固网运营商 异质分流 宽带业务
下载PDF
Multichannel charge separation promoted ZnO /P25 heterojunctions for the photocatalytic oxidation of toluene 被引量:1
5
作者 孔洁静 赖晓冬 +2 位作者 芮泽宝 纪红兵 季生福 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期869-877,共9页
The fabrication of multicomponent heterojunctions is an effective strategy to improve the performance of TiO2 based photocatalysts. We provide a new strategy for improving the charge separation and photocatalytic perf... The fabrication of multicomponent heterojunctions is an effective strategy to improve the performance of TiO2 based photocatalysts. We provide a new strategy for improving the charge separation and photocatalytic performance of ZnO /TiO2 composites by the formation of multichannel charge separated heterojunctions. ZnO /P25 composites were prepared by an incipient wetness impregnation method, and applied for the photocatalytic destruction of gaseous toluene. The ZnO /P25 composites consist of anatase TiO2(ATiO2), rutile TiO2(RTiO2) and hexagonal zincite structures. The parasitic phase of ZnO in P25 leads to the formation of ZnO(002)/ATiO2(101)/RTiO2(110) heterojunctions that exhibit enhanced light absorption and improved multichannel electron/hole separation. ZnO /P25 heterojunctions can completely oxidize toluene into CO2 and H2O under ultraviolet light irradiation at room temperature, and show enhanced photocatalytic activity in comparison with P25 owing to the efficient electron-hole separation. Such a multichannel charge separated design strategy may provide new insight into the design of highly effective photocatalysts and their potential technological applications. 展开更多
关键词 Titanium dioxide Zinc oxide TOLUENE PHOTOCATALYSIS HETEROJUNCTION Multichannel charge separation
下载PDF
Highly efficient visible-light photocatalytic H2 evolution over 2D–2D Cd S/Cu7S4 layered heterojunctions 被引量:13
6
作者 Doudou Ren Rongchen Shen +2 位作者 Zhimin Jiang Xinyong Lu Xin Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第1期31-40,共10页
Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is importan... Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is important for sustainable energy development and environmental protection.In this study,for the first time,2D Cu7S4 co-catalysts were coupled on the surface of a CdS nanosheet photocatalyst by a one-step ultrasonic-assisted electrostatic self-assembly method at room temperature.The as-fabricated 2D^-2D CdS/Cu7S4 layered heterojunctions were demonstrated to be advanced composite photocatalysts that enhance the water splitting efficiency toward hydrogen production.The highest hydrogen evolution rate of the 2D^-2D CdS/2%Cu7S4 binary heterojunction photocatalyst was up to 27.8 mmol g^-1 h^-1 under visible light irradiation,with an apparent quantum efficiency of 14.7%at 420 nm,which was almost 10.69 times and 2.65 times higher than those of pure CdS nanosheets(2.6 mmol g^-1 h^-1)and CdS-2%CuS(10.5 mmol g^-1 h^-1),respectively.The establishment of the CdS/Cu7S4 binary-layered heterojunction could not only enhance the separation of photogenerated electron-hole(e--h+)pairs,improve the transfer of photo-excited electrons,and prolong the life-span of photo-generated electrons,but also enhance the light absorption and hydrogen-evolution kinetics.All these factors are important for the enhancement of the photocatalytic activity.Expectedly,the 2D^-2D interface coupling strategy based on CdS NSs can be extensively exploited to improve the hydrogen-evolution activity over various kinds of conventional semiconductor NSs. 展开更多
关键词 Visible-light photocatalytic H2 evolution CdS nanosheet Cu7S4 cocatalysts Layered heterojunction Charge separation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部