期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于异质图卷积注意网络的社交媒体账号分类 被引量:1
1
作者 陈周国 丁建伟 +1 位作者 明杨 费高雷 《计算机系统应用》 2023年第7期269-275,共7页
由于社交媒体网络的复杂性,单一性质的同质信息网络对社交媒体账号分类会造成信息丢失,对分类结果产生不利影响.针对这种问题,本文提出基于异质图卷积注意网络的社交媒体账号分类方法(HGCANA).首先构建社交媒体的异质信息网络,然后提取... 由于社交媒体网络的复杂性,单一性质的同质信息网络对社交媒体账号分类会造成信息丢失,对分类结果产生不利影响.针对这种问题,本文提出基于异质图卷积注意网络的社交媒体账号分类方法(HGCANA).首先构建社交媒体的异质信息网络,然后提取异质信息网络的社交媒体特征,引入注意力机制,对社交媒体账号进行分类识别.通过实验比较HGCANA方法与现有方法,证明了本文提出的HGCANA方法能够更好地对社交网络媒体账号进行有效分类. 展开更多
关键词 社交媒体网络 账号分类 异质图卷注意网络
下载PDF
基于改进归纳式图卷积网络的文本分类方法 被引量:1
2
作者 赵钦 郑成博 《计算机工程与设计》 北大核心 2023年第4期1144-1150,共7页
针对图嵌入式文本分类方法在预测性能和归纳能力方面的缺陷,在文本图卷积网络(TextGCN)的基础上,进行适当改进。结合预测文本嵌入(PTE)的高效训练和归纳性,在各个网络层中使用不同的图;通过异质图卷积网络架构来学习特征嵌入,利用习得... 针对图嵌入式文本分类方法在预测性能和归纳能力方面的缺陷,在文本图卷积网络(TextGCN)的基础上,进行适当改进。结合预测文本嵌入(PTE)的高效训练和归纳性,在各个网络层中使用不同的图;通过异质图卷积网络架构来学习特征嵌入,利用习得的特征进行归纳推理。实验结果表明,在大量训练样本标注的情况下,所提方法取得了与其它方法相当或稍优的性能。在少量训练样本标注的情况下,所提方法表现更优,性能增益范围为2%~7%,支持更快的训练和泛化性。 展开更多
关键词 文本分类 预测性能 文本图卷网络 异质图卷积网络 预测文本嵌入 归纳推理 特征嵌入
下载PDF
Heterogeneous graph construction and node representation learning method of Treatise on Febrile Diseases based on graph convolutional network
3
作者 YAN Junfeng WEN Zhihua ZOU Beiji 《Digital Chinese Medicine》 2022年第4期419-428,共10页
Objective To construct symptom-formula-herb heterogeneous graphs structured Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)dataset and explore an optimal learning method represented with node attributes based o... Objective To construct symptom-formula-herb heterogeneous graphs structured Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)dataset and explore an optimal learning method represented with node attributes based on graph convolutional network(GCN).Methods Clauses that contain symptoms,formulas,and herbs were abstracted from Treatise on Febrile Diseases to construct symptom-formula-herb heterogeneous graphs,which were used to propose a node representation learning method based on GCN−the Traditional Chinese Medicine Graph Convolution Network(TCM-GCN).The symptom-formula,symptom-herb,and formula-herb heterogeneous graphs were processed with the TCM-GCN to realize high-order propagating message passing and neighbor aggregation to obtain new node representation attributes,and thus acquiring the nodes’sum-aggregations of symptoms,formulas,and herbs to lay a foundation for the downstream tasks of the prediction models.Results Comparisons among the node representations with multi-hot encoding,non-fusion encoding,and fusion encoding showed that the Precision@10,Recall@10,and F1-score@10 of the fusion encoding were 9.77%,6.65%,and 8.30%,respectively,higher than those of the non-fusion encoding in the prediction studies of the model.Conclusion Node representations by fusion encoding achieved comparatively ideal results,indicating the TCM-GCN is effective in realizing node-level representations of heterogeneous graph structured Treatise on Febrile Diseases dataset and is able to elevate the performance of the downstream tasks of the diagnosis model. 展开更多
关键词 Graph convolutional network(GCN) Heterogeneous graph Treatise on Febrile Diseases(Shang Han Lun 《伤寒论》) Node representations on heterogeneous graph Node representation learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部