A new kind of self-standing CuO@TiO2 nanowires (NWs) film with hierarchical feature was prepared by a three-step protocol consisting of hydrothermal reaction, electroless plating, and branched growth processes. This h...A new kind of self-standing CuO@TiO2 nanowires (NWs) film with hierarchical feature was prepared by a three-step protocol consisting of hydrothermal reaction, electroless plating, and branched growth processes. This heterostructured CuO@TiO2 NWs film demonstrates the favorable physical properties in the photoelectrochemical cell (PEC) water splitting, such as the hierarchical surface, the extended optical absorption range, and the rapid interface charge transfer kinetics. Under the illumination of the simulated solar light, the pristine TiO2 NWs film only attains a photocurrent density of 0.12 mA/cm2 at 1.0 V versus reversible hydrogen electrode (RHE). Significantly, the CuO@TiO2 NWs film can yield a dramatically increased photocurrent density of 0.56 mA/cm2 at the same applied voltage. Furthermore, amperometric I?t tests of the CuO@TiO2 NWs film reveal satisfactory stability. All the above characteristics of this heterostructured CuO@TiO2 NWs film indicate its great potential in the water splitting applications with solar visible light.展开更多
Zero‐dimensional carbon dots(0D C‐dots)and one‐dimensional sulfide cadmium nanowires(1D CdS NWs)were prepared by microwave and solvothermal methods,respectively.A series of heterogeneous photocatalysts that consist...Zero‐dimensional carbon dots(0D C‐dots)and one‐dimensional sulfide cadmium nanowires(1D CdS NWs)were prepared by microwave and solvothermal methods,respectively.A series of heterogeneous photocatalysts that consisted of 1D CdS NWs that were modified with 0D C‐dots(C‐dots/CdS NWs)were synthesized using chemical deposition methods.The mass fraction of C‐dots to CdS NWs in these photocatalysts was varied.The photocatalysts were characterized using X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron spectroscopy,and ultraviolet‐visible spectroscopy.Their photocatalytic performance for the spitting of water and the degradation of rhodamine B(RhB)under visible light irradiation were investigated.The photocatalytic performance of the C‐dots/CdS NWs was enhanced when compared with that of the pure CdS NWs,with the 0.4%C‐dots/CdS NWs exhibiting the highest photocatalytic activity for the splitting of water and the degradation of RhB.The enhanced photocatalytic activity was attributed to a higher carrier density because of the heterojunction between the C‐dots and CdS NWs.This heterojunction improved the electronic transmission capacity and promoted efficient separation of photogenerated electrons and holes.展开更多
A novel infrared light emitting diode (LED) based on an ordered p-n heterojunction built of a p-Si1-xGe/alloy and n-ZnO nanowires has been developed. The electroluminescence (EL) emission of this LED is in the inf...A novel infrared light emitting diode (LED) based on an ordered p-n heterojunction built of a p-Si1-xGe/alloy and n-ZnO nanowires has been developed. The electroluminescence (EL) emission of this LED is in the infrared range, which is dominated by the band gap of Si1-xGex alloy. The EL wavelength variation of the LED shows a red shift, which increases with increasing mole fraction of Ge. With Ge mole fractions of 0.18, 0.23 and 0.29, the average EL wavelengths are around 1,144, 1,162 and 1,185 nm, respectively. The observed magnitudes of the red shifts are consistent with theoretical calculations. Therefore, by modulating the mole fraction of Ge in the Si1-xGex alloy, we can adjust the band gap of the SiGe film and tune the emission wavelength of the fabricated LED. Such an IR LED device may have great potential applications in optical communication, environmental monitoring and biological and medical analyses.展开更多
Sub-1 nm nanowires(SNWs) can not only be processed like polymers due to their polymer-analogue properties but also show multifunctions owing to their well-manipulated compositions and structures. Rationally designed a...Sub-1 nm nanowires(SNWs) can not only be processed like polymers due to their polymer-analogue properties but also show multifunctions owing to their well-manipulated compositions and structures. Rationally designed and engineered multicomponent heterostructure SNWs can further enhance their multifunction performance while it is very challenging to achieve such SNWs at sub-nanoscale.Herein, we synthesized Bi_(2)O_(3)-polyoxometalate heterostructure SNWs(PMB SNWs), and fabricated super-aligned PMB SNWs films(S-PMB SNWs films), which can serve as interlayers to efficiently suppress lithium polysulfide(LPS)shuttling, intrinsically promote the redox kinetics of the LPS conversion and substantially protect the Li anode. The lithium-sulfur(Li-S) battery with the S-PMB SNWs film as the interlayer showcases an ultralow capacity decay rate with 0.013% per cycle over 850 cycles. This study demonstrates the potential of heterostructure SNWs to improve the performance of Li-S batteries.展开更多
In this report we explore the structural and optical properties of GaAs/A1GaAs heterostructure nanowires grown by metalorganic vapour phase epitaxy using gold seed-particles. The optical studies were done by low-tempe...In this report we explore the structural and optical properties of GaAs/A1GaAs heterostructure nanowires grown by metalorganic vapour phase epitaxy using gold seed-particles. The optical studies were done by low-temperature cathodo- luminescence (CL) in a scanning electron microscope (SEM). We perform a systematic investigation of how the nanowire growth-temperature affects the total photon emission, and variations in the emission energy and intensity along the length of the nanowires. The morphology and crystal structures of the nanowires were investigated using SEM and transmission electron microscopy (TEM). In order to correlate specific photon emission characteristics with variations in the nanowire crystal structure directly, TEM and spatially resolved CL measurements were performed on the same individual nanowires. We found that the main emission energy was located at around 1.48 eV, and that the emission intensity was greatly enhanced when increasing the GaAs nanowire core growth temperature. The data strongly suggests that this emission energy is related to rotational twins in the GaAs nanowire core. Our measurements also show that radial overgrowth by GaAs on the GaAs nanowire core can have a deteriorating effect on the optical quality of the nanowires. Finally, we conclude that an in situ pre-growth annealing step at a sufficiently high temperature significantly improves the optical quality of the nanowires.展开更多
Strain engineering is a powerful tool to tailor the physical properties of materials coherently stacked in an epitaxial heterostructure. Such an approach, applied to the mature field of planar heteroepitaxy, has yield...Strain engineering is a powerful tool to tailor the physical properties of materials coherently stacked in an epitaxial heterostructure. Such an approach, applied to the mature field of planar heteroepitaxy, has yielded a variety of new phenomena and devices. Recently, heteroepitaxial vertically aligned nanocomposites have emerged as alternatives to planar structures. Owing to the peculiar geometry of such nanoarchitectures, efficient strain control can be achieved, opening the way to novel functionalities. In this paper, we report a very large tensile axial strain in epitaxial transition metal nanowires embedded in an oxide matrix. We show that axial strains in excess of 1.5% can be sustained over a large thickness (a few hundred nanometers) in epitaxial nanowires having ultrasmall diameters (-3-6 nm). The axial strain depends on the diameter of the nanowires, reflecting its epitaxial nature and the balance of interface and elastic energies. Furthermore, it is experimentally shown that such strain is metastable, in agreement with the calculations performed in the framework of the Frenkel-Kontorova model. The diameter dependence and metastability provide effective ways to control the strain, an appealing feature for the design of functional nanoarchitectures.展开更多
In this study, we reported the design, fabrication, and characterization of well- ordered arrays of vertically-aligned, epitaxial NiSi2/Si heterostructures and single- crystalline NiSi2 nanowires on (001)Si substrat...In this study, we reported the design, fabrication, and characterization of well- ordered arrays of vertically-aligned, epitaxial NiSi2/Si heterostructures and single- crystalline NiSi2 nanowires on (001)Si substrates. The epitaxial NiSi2 with {111} facets was found to be the first and the only silicide phase formed inside the Si nanowires after annealing at a temperature as low as 300℃. Upon annealing at 500 ℃ for 4 h, the residual parts of Si nanowires were completely consumed and the NiSi2/Si heterostructured nanowires were transformed to fully silicided NiSi2 nanowires. XRD, TEM and SAED analyses indicated that all the NiSi2 nanowires were single crystalline and their axial orientations were parallel to the [001] direction. The obtained vertically-aligned NiSi2 nanowires, owing to their well-ordered arrangement, single-crystalline structure, and low effective work function, exhibit excellent field-emission properties with a very low turn-on field of 1.1 V/m. The surface wettability of the nanowires was found to switch from hydrophobic to hydrophilic after the formation of NiSi2 phase and the measured water contact angle decreased with increasing extent of Ni silicidation. The increased hydrophilicity can be explained by the Wenzel model. The obtained results present the exciting prospect that the new approach proposed here will provide the capability to fabricate other highly-ordered, vertically-aligned fully silicided nanowire arrays and may offer potential applications in constructing vertical silicide-based nanodevices.展开更多
基金Projects(21107032,21473079)supported by the National Natural Science Foundation of ChinaProjects(Y201330088,Y20133003)supported by the Department of Education of Zhejiang Province,China
文摘A new kind of self-standing CuO@TiO2 nanowires (NWs) film with hierarchical feature was prepared by a three-step protocol consisting of hydrothermal reaction, electroless plating, and branched growth processes. This heterostructured CuO@TiO2 NWs film demonstrates the favorable physical properties in the photoelectrochemical cell (PEC) water splitting, such as the hierarchical surface, the extended optical absorption range, and the rapid interface charge transfer kinetics. Under the illumination of the simulated solar light, the pristine TiO2 NWs film only attains a photocurrent density of 0.12 mA/cm2 at 1.0 V versus reversible hydrogen electrode (RHE). Significantly, the CuO@TiO2 NWs film can yield a dramatically increased photocurrent density of 0.56 mA/cm2 at the same applied voltage. Furthermore, amperometric I?t tests of the CuO@TiO2 NWs film reveal satisfactory stability. All the above characteristics of this heterostructured CuO@TiO2 NWs film indicate its great potential in the water splitting applications with solar visible light.
基金financially supported by the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute(LSMRI)(KF160413)the National Natural Science Foundation of China(21301161,41376126)~~
文摘Zero‐dimensional carbon dots(0D C‐dots)and one‐dimensional sulfide cadmium nanowires(1D CdS NWs)were prepared by microwave and solvothermal methods,respectively.A series of heterogeneous photocatalysts that consisted of 1D CdS NWs that were modified with 0D C‐dots(C‐dots/CdS NWs)were synthesized using chemical deposition methods.The mass fraction of C‐dots to CdS NWs in these photocatalysts was varied.The photocatalysts were characterized using X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron spectroscopy,and ultraviolet‐visible spectroscopy.Their photocatalytic performance for the spitting of water and the degradation of rhodamine B(RhB)under visible light irradiation were investigated.The photocatalytic performance of the C‐dots/CdS NWs was enhanced when compared with that of the pure CdS NWs,with the 0.4%C‐dots/CdS NWs exhibiting the highest photocatalytic activity for the splitting of water and the degradation of RhB.The enhanced photocatalytic activity was attributed to a higher carrier density because of the heterojunction between the C‐dots and CdS NWs.This heterojunction improved the electronic transmission capacity and promoted efficient separation of photogenerated electrons and holes.
基金The authors are grateful for the support from the "Thousands Talents" Program for Pioneer Researchers and Their Innovation Teams, China the President's Funding of the Chinese Academy of Sciences+3 种基金 the National Natural Science Foundation of China (Nos. 51272238, 21321062, 51432005 and 61405040) the Innovation Talent Project of Henan Province (No. 13HASTIT020) the Talent Project of Zhengzhou University (No. ZDGD13001) and the Surface Engineering Key Lab of LIPCAST the Tsinghua University Initiative Scientific Research Program, the National Natural Science Foundation of China (No. 61306105).
文摘A novel infrared light emitting diode (LED) based on an ordered p-n heterojunction built of a p-Si1-xGe/alloy and n-ZnO nanowires has been developed. The electroluminescence (EL) emission of this LED is in the infrared range, which is dominated by the band gap of Si1-xGex alloy. The EL wavelength variation of the LED shows a red shift, which increases with increasing mole fraction of Ge. With Ge mole fractions of 0.18, 0.23 and 0.29, the average EL wavelengths are around 1,144, 1,162 and 1,185 nm, respectively. The observed magnitudes of the red shifts are consistent with theoretical calculations. Therefore, by modulating the mole fraction of Ge in the Si1-xGex alloy, we can adjust the band gap of the SiGe film and tune the emission wavelength of the fabricated LED. Such an IR LED device may have great potential applications in optical communication, environmental monitoring and biological and medical analyses.
基金supported by the Ministry of Science and Technology of China (2017YFA0700101, 2016YFA0202801 and 2016YBF0100100)China Postdoctoral Science Foundation funded project (2020TQ0164)+7 种基金the Shuimu Tsinghua Scholar Programthe National Natural Science Foundation of China (22035004, 51872283 and 21805273)Liaoning Bai Qian Wan Talents ProgramLiaoning Revitalization Talents Program (XLYC1807153)Dalian Institute of Chemical Physics (DICP ZZBS201708, DICP ZZBS201802 and DICP I202032)DICP&QIBEBT (DICP&QIBEBT UN201702)Dalian National Laboratory For Clean Energy (DNL) Cooperation FundCAS (DNL180310, DNL180308, DNL201912 and DNL201915)。
文摘Sub-1 nm nanowires(SNWs) can not only be processed like polymers due to their polymer-analogue properties but also show multifunctions owing to their well-manipulated compositions and structures. Rationally designed and engineered multicomponent heterostructure SNWs can further enhance their multifunction performance while it is very challenging to achieve such SNWs at sub-nanoscale.Herein, we synthesized Bi_(2)O_(3)-polyoxometalate heterostructure SNWs(PMB SNWs), and fabricated super-aligned PMB SNWs films(S-PMB SNWs films), which can serve as interlayers to efficiently suppress lithium polysulfide(LPS)shuttling, intrinsically promote the redox kinetics of the LPS conversion and substantially protect the Li anode. The lithium-sulfur(Li-S) battery with the S-PMB SNWs film as the interlayer showcases an ultralow capacity decay rate with 0.013% per cycle over 850 cycles. This study demonstrates the potential of heterostructure SNWs to improve the performance of Li-S batteries.
文摘In this report we explore the structural and optical properties of GaAs/A1GaAs heterostructure nanowires grown by metalorganic vapour phase epitaxy using gold seed-particles. The optical studies were done by low-temperature cathodo- luminescence (CL) in a scanning electron microscope (SEM). We perform a systematic investigation of how the nanowire growth-temperature affects the total photon emission, and variations in the emission energy and intensity along the length of the nanowires. The morphology and crystal structures of the nanowires were investigated using SEM and transmission electron microscopy (TEM). In order to correlate specific photon emission characteristics with variations in the nanowire crystal structure directly, TEM and spatially resolved CL measurements were performed on the same individual nanowires. We found that the main emission energy was located at around 1.48 eV, and that the emission intensity was greatly enhanced when increasing the GaAs nanowire core growth temperature. The data strongly suggests that this emission energy is related to rotational twins in the GaAs nanowire core. Our measurements also show that radial overgrowth by GaAs on the GaAs nanowire core can have a deteriorating effect on the optical quality of the nanowires. Finally, we conclude that an in situ pre-growth annealing step at a sufficiently high temperature significantly improves the optical quality of the nanowires.
文摘Strain engineering is a powerful tool to tailor the physical properties of materials coherently stacked in an epitaxial heterostructure. Such an approach, applied to the mature field of planar heteroepitaxy, has yielded a variety of new phenomena and devices. Recently, heteroepitaxial vertically aligned nanocomposites have emerged as alternatives to planar structures. Owing to the peculiar geometry of such nanoarchitectures, efficient strain control can be achieved, opening the way to novel functionalities. In this paper, we report a very large tensile axial strain in epitaxial transition metal nanowires embedded in an oxide matrix. We show that axial strains in excess of 1.5% can be sustained over a large thickness (a few hundred nanometers) in epitaxial nanowires having ultrasmall diameters (-3-6 nm). The axial strain depends on the diameter of the nanowires, reflecting its epitaxial nature and the balance of interface and elastic energies. Furthermore, it is experimentally shown that such strain is metastable, in agreement with the calculations performed in the framework of the Frenkel-Kontorova model. The diameter dependence and metastability provide effective ways to control the strain, an appealing feature for the design of functional nanoarchitectures.
文摘In this study, we reported the design, fabrication, and characterization of well- ordered arrays of vertically-aligned, epitaxial NiSi2/Si heterostructures and single- crystalline NiSi2 nanowires on (001)Si substrates. The epitaxial NiSi2 with {111} facets was found to be the first and the only silicide phase formed inside the Si nanowires after annealing at a temperature as low as 300℃. Upon annealing at 500 ℃ for 4 h, the residual parts of Si nanowires were completely consumed and the NiSi2/Si heterostructured nanowires were transformed to fully silicided NiSi2 nanowires. XRD, TEM and SAED analyses indicated that all the NiSi2 nanowires were single crystalline and their axial orientations were parallel to the [001] direction. The obtained vertically-aligned NiSi2 nanowires, owing to their well-ordered arrangement, single-crystalline structure, and low effective work function, exhibit excellent field-emission properties with a very low turn-on field of 1.1 V/m. The surface wettability of the nanowires was found to switch from hydrophobic to hydrophilic after the formation of NiSi2 phase and the measured water contact angle decreased with increasing extent of Ni silicidation. The increased hydrophilicity can be explained by the Wenzel model. The obtained results present the exciting prospect that the new approach proposed here will provide the capability to fabricate other highly-ordered, vertically-aligned fully silicided nanowire arrays and may offer potential applications in constructing vertical silicide-based nanodevices.