文章通过Stober法合成粒径为300 nm的SiO_(2)纳米球,将该纳米球以乙醇为溶剂配置成一定浓度的悬浮液,通过旋涂法使其在染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)的光阳极P25上形成一层薄膜,再将形成的P25-SiO_(2)复合膜放...文章通过Stober法合成粒径为300 nm的SiO_(2)纳米球,将该纳米球以乙醇为溶剂配置成一定浓度的悬浮液,通过旋涂法使其在染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)的光阳极P25上形成一层薄膜,再将形成的P25-SiO_(2)复合膜放入TiO_(2)溶胶中浸泡一定时间,使得光阳极上的SiO_(2)纳米球被TiO_(2)纳米粒子包裹,形成SiO_(2)-TiO_(2)核壳结构薄膜。与没有散射层的DSSCs相比,以该核壳结构薄膜作为DSSCs的光散射层电池的光电转换效率提高了18%。展开更多
The selective hydrogenolysis of glycerol exhibits great prospects,while the catalysts with high selectivity and activity are still missing and need to be created urgently.Herein,we report the synthesis of hollow mesop...The selective hydrogenolysis of glycerol exhibits great prospects,while the catalysts with high selectivity and activity are still missing and need to be created urgently.Herein,we report the synthesis of hollow mesoporous Pt/WO_(x)/SiO_(2)-TiO_(2)nanosphere catalysts with bi-functional interfaces synergistically for high efficiency conversion of glycerol to 1,3-propanediol.The hollow mesoporous Pt/WO_(x)/SiO_(2)-TiO_(2)catalysts show a typical brick-concrete liked framework with a high surface area(179.3 m^(2)·g^(-1)),large mesopore size(10.6 nm),uniform particle size(~400 nm),and ultrathin shell thickness(~75 nm).The brick anatase nanocrystals and concrete amorphous SiO_(2)networks can selectively rivet Pt nanoparticles and WO_(x)nanocluster species,respectively,thus constructing two interfaces for effective adsorption,rapidly catalytic dehydration and hydrogenation processes.The hollow mesoporous Pt/WO_(x)/SiO_(2)-TiO_(2)catalysts deliver a high selectivity of 53.8%for 1,3-propanediol(1,3-PDO)at a very high glycerol conversion of 85.0%.As a result,a favorable 1,3-PDO yield of 45.7%can be obtained with excellent stability,which is among the best performances of previously reported catalysts.This work paves a new way to synthesize catalysts with high selectivity,high activity and high stability.展开更多
文摘文章通过Stober法合成粒径为300 nm的SiO_(2)纳米球,将该纳米球以乙醇为溶剂配置成一定浓度的悬浮液,通过旋涂法使其在染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)的光阳极P25上形成一层薄膜,再将形成的P25-SiO_(2)复合膜放入TiO_(2)溶胶中浸泡一定时间,使得光阳极上的SiO_(2)纳米球被TiO_(2)纳米粒子包裹,形成SiO_(2)-TiO_(2)核壳结构薄膜。与没有散射层的DSSCs相比,以该核壳结构薄膜作为DSSCs的光散射层电池的光电转换效率提高了18%。
基金This work was supported by the National Key R&D Program of China(Nos.2022YFA1503501 and 2018YFA0209401)the National Natural Science Foundation of China(Nos.22088101,21975050 and U21A20329)+2 种基金the Program of Shanghai Academic Research Leader(No.21XD1420800)the Shanghai Pilot Program for Basic Research-Fudan University 21TQ1400100(No.21TQ008)the Fundamental Research Funds for the Central Universities(No.20720220010).
文摘The selective hydrogenolysis of glycerol exhibits great prospects,while the catalysts with high selectivity and activity are still missing and need to be created urgently.Herein,we report the synthesis of hollow mesoporous Pt/WO_(x)/SiO_(2)-TiO_(2)nanosphere catalysts with bi-functional interfaces synergistically for high efficiency conversion of glycerol to 1,3-propanediol.The hollow mesoporous Pt/WO_(x)/SiO_(2)-TiO_(2)catalysts show a typical brick-concrete liked framework with a high surface area(179.3 m^(2)·g^(-1)),large mesopore size(10.6 nm),uniform particle size(~400 nm),and ultrathin shell thickness(~75 nm).The brick anatase nanocrystals and concrete amorphous SiO_(2)networks can selectively rivet Pt nanoparticles and WO_(x)nanocluster species,respectively,thus constructing two interfaces for effective adsorption,rapidly catalytic dehydration and hydrogenation processes.The hollow mesoporous Pt/WO_(x)/SiO_(2)-TiO_(2)catalysts deliver a high selectivity of 53.8%for 1,3-propanediol(1,3-PDO)at a very high glycerol conversion of 85.0%.As a result,a favorable 1,3-PDO yield of 45.7%can be obtained with excellent stability,which is among the best performances of previously reported catalysts.This work paves a new way to synthesize catalysts with high selectivity,high activity and high stability.