Verlinde has suggested that the gravity has an entropic origin, and a gravitational system could be regarded as a thermodynarnical system. It is well-known that the equipartition law of energy is invalid at very low t...Verlinde has suggested that the gravity has an entropic origin, and a gravitational system could be regarded as a thermodynarnical system. It is well-known that the equipartition law of energy is invalid at very low temperature. Therefore, entropic force should be modified while the temperature of the holographic screen is very low. It is shown that the modified entropic force is proportional to the square of the acceleration, while the temperature of the holographic screen is much lower than the Debye temperature TD. The modified entropic force returns to the Newton's law of gravitation while the temperature of the holographic screen is much higher than the Debye temperature. The modified entropic force is connected with modified Newtonian dynamics (MOND). The constant ao involved in MOND is linear in the Debye frequency WD, which can be regarded as the largest frequency of the bits in screen. We find that there do have a strong connection between MOND and cosmology in the framework of Verlinde's entropic force, if the holographic screen is taken to be bound of the Universe. The Debye frequency is linear in the Hubble constant Ho.展开更多
A new approach was taken to investigate the crustal stucture of the Kane transform and its aseismic extension, using high quality bathymetry and gravity data. The gravity signatures associated with variations in crust...A new approach was taken to investigate the crustal stucture of the Kane transform and its aseismic extension, using high quality bathymetry and gravity data. The gravity signatures associated with variations in crustal thickness of the transform were isolated from the observed free air anomaly, was continued downward to the mean depth of the crust/mantle interface and converted onto the relief on that surface. The crustal thickness of the transform was then calculated by subtracting seawater depth from the depth of the gravity inferred crust/mantle interface.3 D gravity investigation results indicate that the Kane transform and adjacent areas are associated with a crust thinner than normal oceanic crust. The transform trough is largely underlain by a crust less than 4.5km thick and in the nodal basins the crust may be as thin as 3 km. The crust beneath the fracture zone valley is 4-5.5 km thick. The rift valleys on the spreading segments are also characterized by thin crust (4-5 km thick). Thin oceanic crust extends to 20-30 km from the transform axis,except for some localized places such as the inside corner highs adjoining the ridge transform intersections. These gravity inferred results match fairly well with limited published seismic results. Thinning of the crust is mainly attributable to a thin layer 3, which in turn may be explained by the combined effects of reduced magma supply at the ends of the spreading segments and tectonic activities in the region.展开更多
The semi-classical black hole tunneling radiation (Parikh-Wilczek tunneling proposal) is calculated undera minimal length uncertainty analysis.It is shown that,the generalized second law of thermodynamics may bound th...The semi-classical black hole tunneling radiation (Parikh-Wilczek tunneling proposal) is calculated undera minimal length uncertainty analysis.It is shown that,the generalized second law of thermodynamics may bound thetunneling probability radiation of a Reissner-Nordstrom black hole radiation.展开更多
The relation between microtubules architecture in the cytoskeletal structure inside the dendrites and soma and the emergence of neuron function and firing action potential crosses the tiny line between physics and bio...The relation between microtubules architecture in the cytoskeletal structure inside the dendrites and soma and the emergence of neuron function and firing action potential crosses the tiny line between physics and biology. As decoherence is a fundamental mechanism in some biological process such as photosynthesis and others examples, the gravitational quantum approach may contribute to elucidate if neuron function really emerges from quantum coherence in neuronal microtubules. The Einstein equation correlates the stress-energy tensor Tμv to a specific divergence-free combination Ricci tensor Rμv and the metric. In the semiclassical formulation, we have Gμv = Rμv -1/2gμvR=8πG/C^4〈ψ|μvψ〉 which describes the quantum field in curved space-time geometry. But for a more precise equation in relation to the stress-energy tensor, we know that in a non-zero temperature, the wave-function is not enough to describe the physical reality. A more precise equation demands a formulation in the density-matrix form but for now there is no Diosi-Penrose model with density-matrix formulation. Such a density-matrix description can be viewed as a probability mixture of different wave-functions. Using some algebra and rules related to the mathematical manipulation of the density-matrix applied to operators, such the stress energy tensor, we found the von Neumann-Einstein equation for the general relativity equation in the density matrix operator form, Gμv = 8πG/C^4Tr[pTμv]. Thus density-matrix operator--instead of just a wave function of pure states--applied to the stress-energy tensor gives the curvature of space time, given by Einstein tensor, Gμv. The quantum fluctuation in the gravitational space-time field might feed back to decohere the quantum density-matrix. As long as decoherence can be viewed as the loss of information from a system to the environment, the density-matrix p is also related to that process and considering the measurement problem, density-matrix /garter is a more complete description of the possible outcome of the measurement. It is possible that some characteristics of the special microtubulin-associated proteins (MAP) that capes the dendritic-somatic microtubulins which could induces longer-lived nuclear spin states prevented from de-polymerization and suitable for long term information encode and memory. Understand the mechanism by which the hyper-phosphorylation in type tau-MAP displacements from microtubulins results in neurofibrillary tangles and cognitive dysfunctions in Alzheimer's disease.展开更多
The problem of separating gravitation from inertia is discussed in very general sense, and the conclusion is positive: man can separate gravitation from inertia, if various observation techniques are applied for. The ...The problem of separating gravitation from inertia is discussed in very general sense, and the conclusion is positive: man can separate gravitation from inertia, if various observation techniques are applied for. The accelerometer's position problem in satellite gravimetry is investigated, and the additional acceleration effect due to the position error of an instrument as well as the difference between the mass center and the gravity center is explored.展开更多
The interactive Lagrangian density of massive photons and gravitons is proposed after an investigation into the interaction between photons with or without mass under the influence of gravity either as classical field...The interactive Lagrangian density of massive photons and gravitons is proposed after an investigation into the interaction between photons with or without mass under the influence of gravity either as classical field, gravitational wave, or gravitons from a perspective of quantum field. This interactive Lagrangian density can provide a step-stone for further research of gravitational wave and the possible rest mass of photon.展开更多
Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framewo...Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γ^μ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man's fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from a rotating charged black hole in 5-dimensional gauged supergravity by constructing a set of appropriate matrices γ^μ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods. This method is universal, and can also be directly extend to the other different-type 5-dimensional charged black holes.展开更多
A cosmological model based on gauge theory of gravity is proposed in thispaper. Combining cosmological principle and field equation of gravitational gauge field, dynamicalequations of the scale factor R(t) of our univ...A cosmological model based on gauge theory of gravity is proposed in thispaper. Combining cosmological principle and field equation of gravitational gauge field, dynamicalequations of the scale factor R(t) of our universe can be obtained. This set of equations has threedifferent solutions. A prediction of the present model is that, if the energy density of theuniverse is not zero and the universe is expanding, the universe must be space-fiat, the totalenergy density must be the critical density ρ_c of the universe. For space-Bat case, this modelgives the same solution as that of the Friedmann model. In other words, though they have differentdynamics of gravitational interactions, general relativity and gauge theory of gravity give the samecosmological model.展开更多
Earthquake-induced landslides along the Dujiangyan-Yingxiu highway after the Ms 8.0 Wenchuan earthquake in 2008 were investigated. It was found that: (1) slopes were shattered and damaged during the earthquake a...Earthquake-induced landslides along the Dujiangyan-Yingxiu highway after the Ms 8.0 Wenchuan earthquake in 2008 were investigated. It was found that: (1) slopes were shattered and damaged during the earthquake and open tension cracks formed on the tops of the slopes; (2) the upper parts of slopes collapsed and slid, while the lower parts remained basically intact, indicating that the upper parts of slopes would be damaged more heavily than the lower parts during an earthquake. Large-scale shaking table model tests were conducted to study failure behavior of slopes under the Wenchuan seismic wave, which reproduced the process of deformation and failure of slopes. Tension cracks emerged at the top and upper part of model, while the bottom of the model remained intact, consistent with field investigations. Depth of the tension crack at the top of model is 32 cm, i.e., 3.2 m compared to the prototype natural slope with a height of 14 m when the length scale ratio (proto/model) is lo. Acceleration at the top of the slope was almost twice as large as that at the toe when the measured accelerations on shaking table are 4.85 m/s2 and 6.49 m/s2, which means that seismic force at the top of the slope is twice the magnitude of that at the toe. By use of the dynamic-strength-reduction method, numerical simulation was conducted to explore the process and mechanism of formation of the sliding surface, with other quantified information. The earthquake-induced failure surfaces commonly consist of tension cracks and shear zones. Within 5 mfrom the top of the slope, the dynamic sliding surface will be about 1 m shallower than the pseudo-static sliding surface in a horizontal direction when the peak ground acceleration (PGA) is 1 m/s2; the dynamic sliding surface will be about 2 m deeper than the pseudo-static sliding surface in a horizontal direction when the PGA is lo m/sL and the depths of the dynamic sliding surface and the pseudo-static sliding surface will be almost the same when the PGA is 2 m/s2. Based on these findings, it is suggested that the key point of anti-seismic design, as well as for mitigation of post-earthquake, secondary mountain hazards, is to prevent tension cracks from forming in the upper part of the slope. Therefore, the depth of tension cracks in slope surfaces is the key to reinforcement of slopes. The depth of the sliding surface from the pseudo-static method can be a reference for slope reinforcement mitigation.展开更多
The authors discovered in first time that the weight of materials or its gravitational force by earth related to its temperature and its ferromagnetism. An experiment was designed to elevate the temperatures of six di...The authors discovered in first time that the weight of materials or its gravitational force by earth related to its temperature and its ferromagnetism. An experiment was designed to elevate the temperatures of six different materials (Au, Ag, Cu, Fe, Al, Ni) up to 600 ℃and precisely measured their weights. It is found all the materials weigh about 0.33 ‰ - 0. 82 ‰ less. For example the weight of silver sample weighted by a precision electronic scale in a manner of special design decreases about 0.8 ‰, when its temperature is elevated to 600 ℃. Thus different metals' gravitational forces or weights are adjusted with temperature variation.展开更多
Fine particles are difficult to fluidize due to strong interparticle attraction.An attempt has been made to study the bed expansion of silica gel(dp=25μm) powder in presence of an acoustic field.A 135 mm diameter flu...Fine particles are difficult to fluidize due to strong interparticle attraction.An attempt has been made to study the bed expansion of silica gel(dp=25μm) powder in presence of an acoustic field.A 135 mm diameter fluidized bed activated by an acoustic field with sound intensity up to 145 dB and frequency from 90 Hz to 170 Hz was studied.The effects of sound pressure level,sound frequency and particle loading on the bed expansion were investigated.Experimental results showed that,bed expansion was good in presence of acoustic field of particular frequency.In addition,it was observed that in presence of acoustic field the bed collapses slowly.展开更多
Inspired by the f(R) non-linear massive gravity, we propose a new kind of modified gravity model, namely f(T) non-linear massive gravity, by adding the dRGT mass term reformulated in the vierbein formalism, to th...Inspired by the f(R) non-linear massive gravity, we propose a new kind of modified gravity model, namely f(T) non-linear massive gravity, by adding the dRGT mass term reformulated in the vierbein formalism, to the f(T) theory. We then investigate the cosmological evolution of f(T) massive gravity, and constrain it by using the latest observational data. We find that it slightly favors a crossing of the phantom divide line from the quintessence-like phase (wae 〉 -1) to the phantom-like one (wae 〈 -1) as redshiff decreases.展开更多
This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first dire...This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors,and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.10525522 and 10875129
文摘Verlinde has suggested that the gravity has an entropic origin, and a gravitational system could be regarded as a thermodynarnical system. It is well-known that the equipartition law of energy is invalid at very low temperature. Therefore, entropic force should be modified while the temperature of the holographic screen is very low. It is shown that the modified entropic force is proportional to the square of the acceleration, while the temperature of the holographic screen is much lower than the Debye temperature TD. The modified entropic force returns to the Newton's law of gravitation while the temperature of the holographic screen is much higher than the Debye temperature. The modified entropic force is connected with modified Newtonian dynamics (MOND). The constant ao involved in MOND is linear in the Debye frequency WD, which can be regarded as the largest frequency of the bits in screen. We find that there do have a strong connection between MOND and cosmology in the framework of Verlinde's entropic force, if the holographic screen is taken to be bound of the Universe. The Debye frequency is linear in the Hubble constant Ho.
文摘A new approach was taken to investigate the crustal stucture of the Kane transform and its aseismic extension, using high quality bathymetry and gravity data. The gravity signatures associated with variations in crustal thickness of the transform were isolated from the observed free air anomaly, was continued downward to the mean depth of the crust/mantle interface and converted onto the relief on that surface. The crustal thickness of the transform was then calculated by subtracting seawater depth from the depth of the gravity inferred crust/mantle interface.3 D gravity investigation results indicate that the Kane transform and adjacent areas are associated with a crust thinner than normal oceanic crust. The transform trough is largely underlain by a crust less than 4.5km thick and in the nodal basins the crust may be as thin as 3 km. The crust beneath the fracture zone valley is 4-5.5 km thick. The rift valleys on the spreading segments are also characterized by thin crust (4-5 km thick). Thin oceanic crust extends to 20-30 km from the transform axis,except for some localized places such as the inside corner highs adjoining the ridge transform intersections. These gravity inferred results match fairly well with limited published seismic results. Thinning of the crust is mainly attributable to a thin layer 3, which in turn may be explained by the combined effects of reduced magma supply at the ends of the spreading segments and tectonic activities in the region.
文摘The semi-classical black hole tunneling radiation (Parikh-Wilczek tunneling proposal) is calculated undera minimal length uncertainty analysis.It is shown that,the generalized second law of thermodynamics may bound thetunneling probability radiation of a Reissner-Nordstrom black hole radiation.
文摘The relation between microtubules architecture in the cytoskeletal structure inside the dendrites and soma and the emergence of neuron function and firing action potential crosses the tiny line between physics and biology. As decoherence is a fundamental mechanism in some biological process such as photosynthesis and others examples, the gravitational quantum approach may contribute to elucidate if neuron function really emerges from quantum coherence in neuronal microtubules. The Einstein equation correlates the stress-energy tensor Tμv to a specific divergence-free combination Ricci tensor Rμv and the metric. In the semiclassical formulation, we have Gμv = Rμv -1/2gμvR=8πG/C^4〈ψ|μvψ〉 which describes the quantum field in curved space-time geometry. But for a more precise equation in relation to the stress-energy tensor, we know that in a non-zero temperature, the wave-function is not enough to describe the physical reality. A more precise equation demands a formulation in the density-matrix form but for now there is no Diosi-Penrose model with density-matrix formulation. Such a density-matrix description can be viewed as a probability mixture of different wave-functions. Using some algebra and rules related to the mathematical manipulation of the density-matrix applied to operators, such the stress energy tensor, we found the von Neumann-Einstein equation for the general relativity equation in the density matrix operator form, Gμv = 8πG/C^4Tr[pTμv]. Thus density-matrix operator--instead of just a wave function of pure states--applied to the stress-energy tensor gives the curvature of space time, given by Einstein tensor, Gμv. The quantum fluctuation in the gravitational space-time field might feed back to decohere the quantum density-matrix. As long as decoherence can be viewed as the loss of information from a system to the environment, the density-matrix p is also related to that process and considering the measurement problem, density-matrix /garter is a more complete description of the possible outcome of the measurement. It is possible that some characteristics of the special microtubulin-associated proteins (MAP) that capes the dendritic-somatic microtubulins which could induces longer-lived nuclear spin states prevented from de-polymerization and suitable for long term information encode and memory. Understand the mechanism by which the hyper-phosphorylation in type tau-MAP displacements from microtubulins results in neurofibrillary tangles and cognitive dysfunctions in Alzheimer's disease.
基金Funded by the National Natural Science Foundation of China (No.40374004)the Foundation of the Key Laboratory of Geo-space Environment and Geodesy, Ministry of Education, China (No.03-04-13).
文摘The problem of separating gravitation from inertia is discussed in very general sense, and the conclusion is positive: man can separate gravitation from inertia, if various observation techniques are applied for. The accelerometer's position problem in satellite gravimetry is investigated, and the additional acceleration effect due to the position error of an instrument as well as the difference between the mass center and the gravity center is explored.
基金Funded by the National Basic Research Programs of China under Grant No. 2003CB716300, the Natural Science Foundation of Chongqing under Grant No. 8562, and the Natural Science Foundation of China under Grant No. 10575140.
文摘The interactive Lagrangian density of massive photons and gravitons is proposed after an investigation into the interaction between photons with or without mass under the influence of gravity either as classical field, gravitational wave, or gravitons from a perspective of quantum field. This interactive Lagrangian density can provide a step-stone for further research of gravitational wave and the possible rest mass of photon.
基金Supported by the Natural Science Foundation of Liaoning Province of China under Grant No.2009A646
文摘Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γ^μ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man's fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from a rotating charged black hole in 5-dimensional gauged supergravity by constructing a set of appropriate matrices γ^μ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods. This method is universal, and can also be directly extend to the other different-type 5-dimensional charged black holes.
文摘A cosmological model based on gauge theory of gravity is proposed in thispaper. Combining cosmological principle and field equation of gravitational gauge field, dynamicalequations of the scale factor R(t) of our universe can be obtained. This set of equations has threedifferent solutions. A prediction of the present model is that, if the energy density of theuniverse is not zero and the universe is expanding, the universe must be space-fiat, the totalenergy density must be the critical density ρ_c of the universe. For space-Bat case, this modelgives the same solution as that of the Friedmann model. In other words, though they have differentdynamics of gravitational interactions, general relativity and gauge theory of gravity give the samecosmological model.
基金supported by 973 Program,Grant No. 2008CB425802National Natural Science Foundation of Chinasupported by the Fundamental Research Funds for the Central Universities (SWJTU09ZT04)
文摘Earthquake-induced landslides along the Dujiangyan-Yingxiu highway after the Ms 8.0 Wenchuan earthquake in 2008 were investigated. It was found that: (1) slopes were shattered and damaged during the earthquake and open tension cracks formed on the tops of the slopes; (2) the upper parts of slopes collapsed and slid, while the lower parts remained basically intact, indicating that the upper parts of slopes would be damaged more heavily than the lower parts during an earthquake. Large-scale shaking table model tests were conducted to study failure behavior of slopes under the Wenchuan seismic wave, which reproduced the process of deformation and failure of slopes. Tension cracks emerged at the top and upper part of model, while the bottom of the model remained intact, consistent with field investigations. Depth of the tension crack at the top of model is 32 cm, i.e., 3.2 m compared to the prototype natural slope with a height of 14 m when the length scale ratio (proto/model) is lo. Acceleration at the top of the slope was almost twice as large as that at the toe when the measured accelerations on shaking table are 4.85 m/s2 and 6.49 m/s2, which means that seismic force at the top of the slope is twice the magnitude of that at the toe. By use of the dynamic-strength-reduction method, numerical simulation was conducted to explore the process and mechanism of formation of the sliding surface, with other quantified information. The earthquake-induced failure surfaces commonly consist of tension cracks and shear zones. Within 5 mfrom the top of the slope, the dynamic sliding surface will be about 1 m shallower than the pseudo-static sliding surface in a horizontal direction when the peak ground acceleration (PGA) is 1 m/s2; the dynamic sliding surface will be about 2 m deeper than the pseudo-static sliding surface in a horizontal direction when the PGA is lo m/sL and the depths of the dynamic sliding surface and the pseudo-static sliding surface will be almost the same when the PGA is 2 m/s2. Based on these findings, it is suggested that the key point of anti-seismic design, as well as for mitigation of post-earthquake, secondary mountain hazards, is to prevent tension cracks from forming in the upper part of the slope. Therefore, the depth of tension cracks in slope surfaces is the key to reinforcement of slopes. The depth of the sliding surface from the pseudo-static method can be a reference for slope reinforcement mitigation.
文摘The authors discovered in first time that the weight of materials or its gravitational force by earth related to its temperature and its ferromagnetism. An experiment was designed to elevate the temperatures of six different materials (Au, Ag, Cu, Fe, Al, Ni) up to 600 ℃and precisely measured their weights. It is found all the materials weigh about 0.33 ‰ - 0. 82 ‰ less. For example the weight of silver sample weighted by a precision electronic scale in a manner of special design decreases about 0.8 ‰, when its temperature is elevated to 600 ℃. Thus different metals' gravitational forces or weights are adjusted with temperature variation.
文摘Fine particles are difficult to fluidize due to strong interparticle attraction.An attempt has been made to study the bed expansion of silica gel(dp=25μm) powder in presence of an acoustic field.A 135 mm diameter fluidized bed activated by an acoustic field with sound intensity up to 145 dB and frequency from 90 Hz to 170 Hz was studied.The effects of sound pressure level,sound frequency and particle loading on the bed expansion were investigated.Experimental results showed that,bed expansion was good in presence of acoustic field of particular frequency.In addition,it was observed that in presence of acoustic field the bed collapses slowly.
基金Supported by National Natural Science Foundation of China under Grant Nos.11175016 and 10905005New Century Excellent Talents in University under Grant No.NCET-11-0790
文摘Inspired by the f(R) non-linear massive gravity, we propose a new kind of modified gravity model, namely f(T) non-linear massive gravity, by adding the dRGT mass term reformulated in the vierbein formalism, to the f(T) theory. We then investigate the cosmological evolution of f(T) massive gravity, and constrain it by using the latest observational data. We find that it slightly favors a crossing of the phantom divide line from the quintessence-like phase (wae 〉 -1) to the phantom-like one (wae 〈 -1) as redshiff decreases.
基金the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory and the Science and Technology Facilities Council of the United Kingdomthe MaxPlanck-Society,and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector+4 种基金the support of the research by these agencies and by the Australian Research Council,the Council of Scientific and Industrial Research of Indiathe Alfred P.Sloan Foundation.S.H.acknowledges the support from the European Research Council(ERC-2012-St G:307245)supported by the LSC LIGO visitor program,the Australian Department of Education and Australian Research Councilalso supported by Australian Research Council(Grant Nos.DP120100898 and DP120104676)LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation,and operates under cooperative agreement PHY-0757058
文摘This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors,and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.