By calculating the azimuth, phase angle and change rate of tidal force, and contrasting their rupture types, we find that in 6 of 11 reverse faulting earthquakes, the angles between the direction of the horizontal tid...By calculating the azimuth, phase angle and change rate of tidal force, and contrasting their rupture types, we find that in 6 of 11 reverse faulting earthquakes, the angles between the direction of the horizontal tidal force and compressive principal stress are within 33°, the vertical phase angles of all 8 strike-slip earthquakes are in the upward peak section and the vertical phase angles of two extensional normal faulting earthquakes are in the downward peak section. According to the above statistics, the mechanism of tidal force triggering of the Wenchnan Ms8. 0 Earthquake and its strong aftershocks is discussed.展开更多
In this paper,we solve the Dirac equation under spin symmetry limit for attractive radial potential including a Coulomb-like tensor interaction.By using the parametric generalization of the Nikiforov-Uvarov method,the...In this paper,we solve the Dirac equation under spin symmetry limit for attractive radial potential including a Coulomb-like tensor interaction.By using the parametric generalization of the Nikiforov-Uvarov method,the energy eigenvalues equation and the corresponding wave functions have been obtained in closed forms.Some numerical results are given too.展开更多
We present Finslerian perturbation for the ∧CDM model, which breaks the isotropic symmetry of the universe. The analysis on the Killing vectors shows that the Randers-Finsler spacetime breaks the isotropic symmetry e...We present Finslerian perturbation for the ∧CDM model, which breaks the isotropic symmetry of the universe. The analysis on the Killing vectors shows that the Randers-Finsler spacetime breaks the isotropic symmetry even ff the scalar perturbations of the FRW metric vanish. In Randers-Finsler spacetime, the modified geodesic equation deduces a modified Boltzmann equation. We propose a perturbational version of the gravitational field equation in Randers-Finsler spacetime, where we have omitted the curvature tensor that does not belong to the base space of the tangent bundle. The gravitational field equations for the gravitational wave are also presented. The primordial power spectrum of the gravitational wave is investigated. We show that the primordial power spectrum for super-horizon perturbations is unchanged. For sub-horizon perturbations, however, the power spectrum is modified.展开更多
基金sponsored under the Seismic Situation Tracing Directional Work Project in Contract System in 2009 (20090203012009010107),China
文摘By calculating the azimuth, phase angle and change rate of tidal force, and contrasting their rupture types, we find that in 6 of 11 reverse faulting earthquakes, the angles between the direction of the horizontal tidal force and compressive principal stress are within 33°, the vertical phase angles of all 8 strike-slip earthquakes are in the upward peak section and the vertical phase angles of two extensional normal faulting earthquakes are in the downward peak section. According to the above statistics, the mechanism of tidal force triggering of the Wenchnan Ms8. 0 Earthquake and its strong aftershocks is discussed.
文摘In this paper,we solve the Dirac equation under spin symmetry limit for attractive radial potential including a Coulomb-like tensor interaction.By using the parametric generalization of the Nikiforov-Uvarov method,the energy eigenvalues equation and the corresponding wave functions have been obtained in closed forms.Some numerical results are given too.
基金Supported by National Natural Science Foundation of China under Grant Nos.11375203 and 11305181
文摘We present Finslerian perturbation for the ∧CDM model, which breaks the isotropic symmetry of the universe. The analysis on the Killing vectors shows that the Randers-Finsler spacetime breaks the isotropic symmetry even ff the scalar perturbations of the FRW metric vanish. In Randers-Finsler spacetime, the modified geodesic equation deduces a modified Boltzmann equation. We propose a perturbational version of the gravitational field equation in Randers-Finsler spacetime, where we have omitted the curvature tensor that does not belong to the base space of the tangent bundle. The gravitational field equations for the gravitational wave are also presented. The primordial power spectrum of the gravitational wave is investigated. We show that the primordial power spectrum for super-horizon perturbations is unchanged. For sub-horizon perturbations, however, the power spectrum is modified.