Kinetic models for the rate constants of vinyl chloride polymerization in the presence of initiator mixtures were proposed. They may be used to design the initiator recipes for the vinyl chloride polymerization with u...Kinetic models for the rate constants of vinyl chloride polymerization in the presence of initiator mixtures were proposed. They may be used to design the initiator recipes for the vinyl chloride polymerization with uniform rate at different temperatures at which various grades of poly(vinyl chloride) will be prepared.展开更多
The photopolymerization kinetics of cycloaliphatic epoxide and oxetane with accelerators were investigated with Real-time Fourier transform infrared spectroscopy(RT-FTIR).The consumption rates of epoxy group and oxeta...The photopolymerization kinetics of cycloaliphatic epoxide and oxetane with accelerators were investigated with Real-time Fourier transform infrared spectroscopy(RT-FTIR).The consumption rates of epoxy group and oxetane group as a function of time were obtained by monitoring of the absorption peaks in the 789 cm-1 and 981 cm-1.The effect of accelerators type and the accelerating mechanism were discussed.In general,benzyl alcohol and its analogues with electron-donating substituents are useful accelerators for the cationic polymerization of cycloaliphatic epoxide and oxetane.Activated monomer mechanism and free-radical chain-induced decomposition of onium salt cationic photoinitiator account for the observed accelerating effect on the polymerization rate.展开更多
Ferrocenium monocations as photoinitiators for cationic photopolymerization suffer from a limitation of low absorption and low reactivity under high-pressure Hg lamp. Here, a ferrocenium dication salt, biphenyl bis [...Ferrocenium monocations as photoinitiators for cationic photopolymerization suffer from a limitation of low absorption and low reactivity under high-pressure Hg lamp. Here, a ferrocenium dication salt, biphenyl bis [π-cyclopentadienyl)iron] hexafluorophosphate ([bis(Cp-Fe)-biphenyl] (PF6)2 was synthesized by the ligand exchange reaction between ferrocene and biphenyl. The chemical structure was characterized with FTIR and ^1HNMR. The separation of ferrocenium monocation cyclopentadien-iron-biphenyl hexafluorophosphate ([Cp-Fe-biphenyl] PF6) and dication [bis(Cp-Fe)-biphenyl] (PF6)2 was carried out by column chromatography. The photoactivity of initiating photopolyinerization of epoxide ER14221 was studied as a cationic photoinitiator. [Bis(Cp-Fe)-biphenyl] (PF6)2 can efficiently absorb radiation above 300nm and its photoactivity is higher than that of its monocation.展开更多
The free-radical-based selective desulfurization of cysteine residue is an efficient protocol to achieve ligations at alanine sites in the synthesis of polypeptide and proteins. In this work, the mechanism of desulfur...The free-radical-based selective desulfurization of cysteine residue is an efficient protocol to achieve ligations at alanine sites in the synthesis of polypeptide and proteins. In this work, the mechanism of desulfurization process has been studied using the density functional theory methods. According to the calculation results, the desulfurization of the thiol group occurs via a three-steps mechanism: the abstraction of hydrogen atom on the thiol group with the radical initiator VA-044 (2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride), the removal of S atom under the reductant TCEP (tris(2-carboxyethyl)phosphine), and the formation of RH molecule (with the regeneration of RS radical). The second step (desulfurization step) is the rate-determining step, and the adduct t-BuSH facilitates the desulfurization of cysteine via benefiting the formation of the precursor of the desulfurization step.展开更多
A novel surface active monomer (surfmer) containing poly(ethylene glycol) chain and terminated phosphate group was synthesized. The copolymerization of synthesized surfmer with NVP (N-vinylpyrrolidone) and with ...A novel surface active monomer (surfmer) containing poly(ethylene glycol) chain and terminated phosphate group was synthesized. The copolymerization of synthesized surfmer with NVP (N-vinylpyrrolidone) and with NVP and VEP (5-tert-butylperoxy-5-methyl-2-hexene-3-yne monomer) led to formation of corresponding surface-active copolymers. The capability of application of resulted copolymers as surface active macroinitiators of emulsion polymerization of styrene and as components of polymeric scaffolds was investigated.展开更多
Cationic polymerization of styrene has been achieved using several novel acidic initiators in room temperature ionic liquids (ILs) under mild reaction conditions to obtain polymers of low molecular weight with narrow ...Cationic polymerization of styrene has been achieved using several novel acidic initiators in room temperature ionic liquids (ILs) under mild reaction conditions to obtain polymers of low molecular weight with narrow polydispersity. Both strong protic acids such as bis(trifluoromethanesulfonyl) amide acid (HTFSA) and a moderately weak acid such as bisoxalato phosphorous acid (HBOP) have been studied as initiators. It has been observed that HTFSA initiates the polymerization rapidly even at room temperature and below, as compared to HBOP which produces a slower polymerization requiring elevated temperatures to complete. The relative difference in reactivity of the initiators as compared to the previously described HBOB initiator is discussed in terms of the difference in their proton acidity and the consequential basicity of the anions. The efficiency of different ILs as the reaction solvent is also presented.展开更多
Amphiphilic graft copolymers are excellent additives for the development of antifouling membranes by nonsolvent induced phase separation. We report a convenient approach to the synthesis of novel graft copolymers with...Amphiphilic graft copolymers are excellent additives for the development of antifouling membranes by nonsolvent induced phase separation. We report a convenient approach to the synthesis of novel graft copolymers with hydrophobic polyacryloni- trile (PAN) backbones and hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) side chains. Atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate was carried out with poly(acrylonitrile-co-p-chloromethyl styrene) (PAN-co-PCMS) as a macroinitiator in the presence of CuC1/2,2'-bipyridine at 50 ~C in dimethyl sulfoxide. Kinetics of the graft polymerization was also evaluated. The synthesis of poly(acrylonitrile-co-p-chloromethyl styrene-g-2-hydroxyethyl methacrylate) (PAN-co-(PCMS-g-PHEMA)) can be relatively controlled when CMS (the ATRP sites) unit in the macroinitia- tor is around 5 mol%. Both the macroinitiators and graft copolymers were characterized by FTIR, NMR and GPC. The surface morphology and wettability of the copolymer films were studied by AFM and water contact angle measurement, respectively. We demonstrate that phase segregation between the PAN-co-PCMS backbones and the PHEMA side chains takes place and the surface hydrophilicity of the graft copolymers increases with the length of the PHEMA side chains. Because these am- phiphilic graft copolymers can be synthesized in mass, they will be useful as latent additives for the fabrication of advanced PAN separation membranes.展开更多
文摘Kinetic models for the rate constants of vinyl chloride polymerization in the presence of initiator mixtures were proposed. They may be used to design the initiator recipes for the vinyl chloride polymerization with uniform rate at different temperatures at which various grades of poly(vinyl chloride) will be prepared.
基金Natural Science Foundation of Hubei Province of China(No.2005ABA181)National Innovation Fund for Small Technology-based Firms(No.05C26214201059)
文摘The photopolymerization kinetics of cycloaliphatic epoxide and oxetane with accelerators were investigated with Real-time Fourier transform infrared spectroscopy(RT-FTIR).The consumption rates of epoxy group and oxetane group as a function of time were obtained by monitoring of the absorption peaks in the 789 cm-1 and 981 cm-1.The effect of accelerators type and the accelerating mechanism were discussed.In general,benzyl alcohol and its analogues with electron-donating substituents are useful accelerators for the cationic polymerization of cycloaliphatic epoxide and oxetane.Activated monomer mechanism and free-radical chain-induced decomposition of onium salt cationic photoinitiator account for the observed accelerating effect on the polymerization rate.
基金Supported by the National Natural Science Foundation of China (20676012).
文摘Ferrocenium monocations as photoinitiators for cationic photopolymerization suffer from a limitation of low absorption and low reactivity under high-pressure Hg lamp. Here, a ferrocenium dication salt, biphenyl bis [π-cyclopentadienyl)iron] hexafluorophosphate ([bis(Cp-Fe)-biphenyl] (PF6)2 was synthesized by the ligand exchange reaction between ferrocene and biphenyl. The chemical structure was characterized with FTIR and ^1HNMR. The separation of ferrocenium monocation cyclopentadien-iron-biphenyl hexafluorophosphate ([Cp-Fe-biphenyl] PF6) and dication [bis(Cp-Fe)-biphenyl] (PF6)2 was carried out by column chromatography. The photoactivity of initiating photopolyinerization of epoxide ER14221 was studied as a cationic photoinitiator. [Bis(Cp-Fe)-biphenyl] (PF6)2 can efficiently absorb radiation above 300nm and its photoactivity is higher than that of its monocation.
基金This work was supported by the National Natural Science Foundation of China (No.21202006), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (No.FRF-TP- 14-015A2), the Natural Science Foundation of Anhui Province (No.1308085QB38), and the Supercomputer Centre of Shanghai.
文摘The free-radical-based selective desulfurization of cysteine residue is an efficient protocol to achieve ligations at alanine sites in the synthesis of polypeptide and proteins. In this work, the mechanism of desulfurization process has been studied using the density functional theory methods. According to the calculation results, the desulfurization of the thiol group occurs via a three-steps mechanism: the abstraction of hydrogen atom on the thiol group with the radical initiator VA-044 (2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride), the removal of S atom under the reductant TCEP (tris(2-carboxyethyl)phosphine), and the formation of RH molecule (with the regeneration of RS radical). The second step (desulfurization step) is the rate-determining step, and the adduct t-BuSH facilitates the desulfurization of cysteine via benefiting the formation of the precursor of the desulfurization step.
文摘A novel surface active monomer (surfmer) containing poly(ethylene glycol) chain and terminated phosphate group was synthesized. The copolymerization of synthesized surfmer with NVP (N-vinylpyrrolidone) and with NVP and VEP (5-tert-butylperoxy-5-methyl-2-hexene-3-yne monomer) led to formation of corresponding surface-active copolymers. The capability of application of resulted copolymers as surface active macroinitiators of emulsion polymerization of styrene and as components of polymeric scaffolds was investigated.
文摘Cationic polymerization of styrene has been achieved using several novel acidic initiators in room temperature ionic liquids (ILs) under mild reaction conditions to obtain polymers of low molecular weight with narrow polydispersity. Both strong protic acids such as bis(trifluoromethanesulfonyl) amide acid (HTFSA) and a moderately weak acid such as bisoxalato phosphorous acid (HBOP) have been studied as initiators. It has been observed that HTFSA initiates the polymerization rapidly even at room temperature and below, as compared to HBOP which produces a slower polymerization requiring elevated temperatures to complete. The relative difference in reactivity of the initiators as compared to the previously described HBOB initiator is discussed in terms of the difference in their proton acidity and the consequential basicity of the anions. The efficiency of different ILs as the reaction solvent is also presented.
基金supported by the National Natural Science Foundation of China (21174124)
文摘Amphiphilic graft copolymers are excellent additives for the development of antifouling membranes by nonsolvent induced phase separation. We report a convenient approach to the synthesis of novel graft copolymers with hydrophobic polyacryloni- trile (PAN) backbones and hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) side chains. Atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate was carried out with poly(acrylonitrile-co-p-chloromethyl styrene) (PAN-co-PCMS) as a macroinitiator in the presence of CuC1/2,2'-bipyridine at 50 ~C in dimethyl sulfoxide. Kinetics of the graft polymerization was also evaluated. The synthesis of poly(acrylonitrile-co-p-chloromethyl styrene-g-2-hydroxyethyl methacrylate) (PAN-co-(PCMS-g-PHEMA)) can be relatively controlled when CMS (the ATRP sites) unit in the macroinitia- tor is around 5 mol%. Both the macroinitiators and graft copolymers were characterized by FTIR, NMR and GPC. The surface morphology and wettability of the copolymer films were studied by AFM and water contact angle measurement, respectively. We demonstrate that phase segregation between the PAN-co-PCMS backbones and the PHEMA side chains takes place and the surface hydrophilicity of the graft copolymers increases with the length of the PHEMA side chains. Because these am- phiphilic graft copolymers can be synthesized in mass, they will be useful as latent additives for the fabrication of advanced PAN separation membranes.