The method of commensurability was used by the authors to predict the great earthquake of magnitude 7.5 that occurred on March 31,2002 in Taiwan 70km away from Hualian. Analyzing the earthquakes of magnitude≥7.0 whic...The method of commensurability was used by the authors to predict the great earthquake of magnitude 7.5 that occurred on March 31,2002 in Taiwan 70km away from Hualian. Analyzing the earthquakes of magnitude≥7.0 which occurred in the Hualian area of Taiwan within the 20th century, the authors discovered that the occurrences of the earthquakes are commensurable. The earthquakes of magnitude 7.6 which occurred in Hualian of Taiwan, on September 20th, 1999 and of magnitude 7.5 which occurred 70 km away from Hualian, on March 31th, 2002 appeared at the commensurable point of K=2 and the period times the golden section, respectively. An extended discussion is carried out on the method of commensurability and its implied physical significance, especially on the contribution of the commensurable periodic extension made by Prof. Weng Wenbo.展开更多
Wudu County in northwestern China frequently experiences large-scale landslide events. High-magnitude earthquakes and heavy rainfall events are the major triggering factors in the region. The aim of this research is t...Wudu County in northwestern China frequently experiences large-scale landslide events. High-magnitude earthquakes and heavy rainfall events are the major triggering factors in the region. The aim of this research is to compare and combine landslide suseeptibility assessments of rainfall- triggered and earthquake-triggered landslide events in the study area using Geographical Information System (GIS) and a logistic regression model. Two separate susceptibility maps were produeed using inventories reflecting single landslide-triggering events, i.e., earthquakes and heavy rain storms. Two groups of landslides were utilized: one group eontaining all landslides triggered by extreme rainfall events between 1995 and 2003 and the other group containing slope failures caused by the 2008 Wenchuan earthquake. Subsequently, the individual maps were combined to illustrate the loeations of maximum landslide probability. The use of the resulting three landslide susceptibility maps for landslide forecasting, spatial planning and for developing emergency response actions are discussed. The eombined susceptibility map illustrates the total landslide susceptibility in the study area.展开更多
The "4.20" Lushan earthquake in Sichuan province, China has induced a large amount of geological hazards and produced abundant loose materials which are prone to post-earthquake rainfall- triggered landslides. A det...The "4.20" Lushan earthquake in Sichuan province, China has induced a large amount of geological hazards and produced abundant loose materials which are prone to post-earthquake rainfall- triggered landslides. A detailed landslide inventory was acquired through post-earthquake emergent field investigation and high resolution remote sensing interpretation. The rainfall analysis was conducted using historical rainfall records during the period from 1951 to 2010. Results indicate that the average annual rainfall distribution is heterogeneous and the largest average annual rainfall occurs in Yucheng district. The Stability Index MAPping (SINMAP) model was adopted to assess and analyze the post- earthquake slope stability under different rainfall scenarios (light rainfall, moderate rainfall, heavy rainfall, and rainstorm). The model parameters were calibrated to reflect the significant influence of strong earthquakes on geological settings. The slope stability maps triggered by different rainfall scenarios were produced at a regional scale. The effect of different rainfall conditions on the slope stability is discussed. The expanding trend of the unstable area was quantitatively assessed with the different critical rainfall intensity. They provide a new insight into the spatial distribution and characteristics of post- earthquake rainfall-triggered landslides in the Lushan seismic area. An increase of rainfall intensity results in a significant increase heterogeneous distribution strongly correlated with of unstable area. The of slope instability is the distribution of earthquake intensity in spite of different rainfall conditions. The results suggest that the both seismic intensity and rainfall are two crucial factors for post- earthquake slope stability. This study provides important references for landslide prevention and mitigation in the Lushan area after earthquake.展开更多
Earthquake-triggered landslides are a major geological hazard in the eastern Tibetan Plateau, and have prolonged impact on earth surface processes and fluvial system. To determine how long co-seismic landslides affect...Earthquake-triggered landslides are a major geological hazard in the eastern Tibetan Plateau, and have prolonged impact on earth surface processes and fluvial system. To determine how long co-seismic landslides affect basins, a massive number of landslides existing in Qionghai Lake Basin were investigated for landslide distribution characteristics and geomorphological evidences, with further comparison and analysis using historic seismic analog method. The landslides found in Qionghai Lake Basin showed clear features of seismic triggering with strongly controlled by Zemuhe fault. These landslides are still active at present. Some new slides generally occur in ancient slope failure zones causing serious secondary hazards in recent years. In this study we strengthen the idea that the landslides triggered by the 185o Xichang earthquake (Ms7.5) have long term activity and prolonged impact on the mountain disasters with a period of more than 16o years. Our results support growing evidence that coseismic landslides have a prolonged effect on secondary disasters in a basin, and invite more careful consideration of the relationship between current basin condition and landslide history for a longer period.展开更多
The primary objective of landslide susceptibility mapping is the prediction of potential landslides in landslide-prone areas. The predictive power of a landslide susceptibility mapping model could be tested in an adja...The primary objective of landslide susceptibility mapping is the prediction of potential landslides in landslide-prone areas. The predictive power of a landslide susceptibility mapping model could be tested in an adjacent area of similar geo- environmental conditions to find out the reliability. Both the 2oo8 Wenchuan Earthquake and the 2o13 Lushan Earthquake occurred in the Longmen Mountain seismic zone, with similar topographical and geological conditions. The two earthquakes are both featured by thrust fault and similar seismic mechanism This paper adopted the susceptibility mapping model of co-seismic landslides triggered by Wenchuan earthquake to predict the spatial distribution of landslides induced by Lushan earthquake. Six influencing parameters were taken into consideration: distance from the seismic fault, slope gradient, lithology, distance from drainage, elevation and Peak Ground Acceleration (PGA). The preliminary results suggested that the zones with high susceptibility of co- seismic landslides were mainly distributed in the mountainous areas of Lushan, Baoxing and Tianquan counties. The co-seismic landslide susceptibility map was completed in two days after the quake and sent to the field investigators to provide guidance for rescue and relief work. The predictive power of the susceptibility map was validated by ROC curve analysis method using 2o37 co-seismic landslides in the epicenter area. The AUC value of o.71o indicated that the susceptibility model derived from Wenchuan Earthquake landslides showed good accuracy inpredicting the landslides triggered by Lushan earthquake.展开更多
Field investigations and aerial photography after the earthquake of May 12, 2008 show a large number of geo-hazards in the zone of extreme earthquake effects. In particular, landslides and debris flows, the geo-ha...Field investigations and aerial photography after the earthquake of May 12, 2008 show a large number of geo-hazards in the zone of extreme earthquake effects. In particular, landslides and debris flows, the geo-hazards that most threaten post-disaster reconstruction, are widely distributed. We describe the characteristics of these geo-hazards in Beichuan County using high-resolution remote sensing of landslide distribution, and the relationships between the area and volume of landslides and the peak-discharges of debris flows both pre- and post-earthquake. The results show: 1) The concentration (defined as the number of landslide sources per unit area: Lc) of earthquake- triggered landslides is inversely correlated with distance from the earthquake (DF) fault. The relationship is described by the following equation: Lc = 3.2264exp(-0.0831DF) (R2 = 0.9246); 2) 87 % of the earthquake-triggered landslides were less than 15× 10^4 m2 in area, and these accounted only for 5o% of the total area; 84% of the landslide volumes were less than 60×10^4 m3, and these accounted only for 50% of the total volume. The probability densities of the area and volume distributions are correlated: landslide abundance increases with landslide area and volume up to maximum values of 5 ×10^4m2 and 30 ×10^4 m3, respectively, and then decreases exponentially. 3) The area (AL) and volume (VL) of earthquake-triggered landslides are correlated as described with the following equation: VL=6.5138AL1.0227 (R2 = 0.9231); 4)Characteristics of the debris flows changed after the earthquake because of the large amount of landslide material deposited in the gullies. Consequently, debris flow peak-discharge increased following the earthquake as described with the following equation: Vpost = 0.8421Vprel-0972 (R2 = 0.9821) (Vpre is the peak discharge ofpre-earthquake flows and the Vpost is the peak discharge of post-earthquake flows). We obtained the distribution of the landslides based on the above analyses, as well as the magnitude of both the landslides and the post-earthquake debris flows. The results can be useful for guiding post-disaster reconstruction and recovery efforts, and for the future mitigation of these geo-hazards. However, the equations presented are not recommended for use in site-specific designs. Rather, we recommend their use for mapping regional seismic landslide hazards or for the preliminary, rapid screening of sites.展开更多
Dongsha Island and the adjacent sea area locate at the northern continental margin of the South China Sea (SCS), and is connected to the east by the Manila Trench. Analyses of seismic stratigraphy and gravity, magneti...Dongsha Island and the adjacent sea area locate at the northern continental margin of the South China Sea (SCS), and is connected to the east by the Manila Trench. Analyses of seismic stratigraphy and gravity, magnetic and drilling wells data led to the discovery of three post fault sequences (V, VI, VII). Extensive tectonic uplift, magma activity and erosion occurred in Dongsha Island and the adjacent area, where most of the faults in the northeastern SCS were still active during Pliocene and Quaternary. Two groups of faults trending NEE and NW were developed during Late Cenozoic. We conclude that three important tectonic movements, especially Dongsha movement (4.4-5.2 Ma) and Liuhua movement (1.4-1.89 Ma), controlled the structural framework in the Dongsha rise; whose deformation in the east is stronger than that in the west and whose stress field variation suggests that the tectonic uplift in the study area contributed to magmato tectonic events correlated to the main collision phases between the East China and Taiwan 5-3 and 3-0 Ma ago.展开更多
Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts...Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.展开更多
The Wenchuan earthquake on May 12,2008 caused numerous collapses,landslides,barrier lakes,and debris flows.Landslide susceptibility mapping is important for evaluation of environmental capacity and also as a guide for...The Wenchuan earthquake on May 12,2008 caused numerous collapses,landslides,barrier lakes,and debris flows.Landslide susceptibility mapping is important for evaluation of environmental capacity and also as a guide for post-earthquake reconstruction.In this paper,a logistic regression model was developed within the framework of GIS to map landslide susceptibility.Qingchuan County,a heavily affected area,was selected for the study.Distribution of landslides was prepared by interpretation of multi-temporal and multi-resolution remote sensing images(ADS40 aerial imagery,SPOT5 imagery and TM imagery,etc.) and field surveys.The Certainly Factor method was used to find the influencial factors,indicating that lithologic groups,distance from major faults,slope angle,profile curvature,and altitude are the dominant factors influencing landslides.The weight of each factor was determined using a binomial logistic regression model.Landslide susceptibility mapping was based on spatial overlay analysis and divided into five classes.Major faults have the most significant impact,and landslides will occur most likely in areas near the faults.Onethird of the area has a high or very high susceptibility,located in the northeast,south and southwest,including 65.3% of all landslides coincident with the earthquake.The susceptibility map can reveal the likelihood of future failures,and it will be useful for planners during the rebuilding process and for future zoning issues.展开更多
Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide h...Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide hazard maps and make them available to the public in advance of an earthquake.Future construction can then be built according to the level of hazard and existing structures can be retrofit as necessary.During recent years various approaches have been made to develop landslide hazard maps using statistical analysis or physical models.However,these methods have limitations.This study introduces a new GIS-based approach,using the contributing weight model,to evaluate the hazard of seismically-induced landslides.In this study,the city and surrounding area of Dujiangyan was selected as the research area because of its moderate-high seismic activity.The parameters incorporated into the model that related to the probability of landslide occurrence were:slope gradient,slope aspect,geomorphology,lithology,base level,surface roughness,earthquake intensity,fault proximity,drainage proximity,and road proximity.The parameters were converted into raster data format with a resolution of 25×25m2 pixels.Analysis of the GIS correlations shows that the highest earthquake-induced landslide hazard areas are mainly in the hills and in some of the moderately steep mountainous areas of central Dujiangyan.The highest hazard zone covers an area of 11.1% of the study area,and the density distribution of seismically-induced landslides was 3.025/km2 from the 2008 Wenchuan earthquake.The moderately hazardous areas are mainly distributed within the moderately steep mountainous regions of the northern and southeastern parts of the study area and the hills of the northeastern part;covering 32.0% of the study area and with a density distribution of 2.123/km2 resulting from the Wenchuan earthquake.The lowest hazard areas are mainly distributed in the topographically flat plain in the northeastern part and some of the relatively gently slopes in the moderately steep mountainous areas of the northern part of Dujiangyan and the surrounding area.The lowest hazard areas cover 56.9% of the study area and exhibited landslide densities of 0.941/km2 and less from the Wenchuan earthquake.The quality of the hazard map was validated using a comparison with the distribution of landslides that were cataloged as occurring from the Wenchuan earthquake.43.1% of the study area consists of high and moderate hazardous zones,and these regions include 83.5% of landslides caused by the Wenchuan earthquake.The successful analysis shows that the contributing weight model can be effective for earthquake-triggered landslide hazard appraisal.The model's results can provide the basis for risk management and regional planning is.展开更多
By calculating the azimuth, phase angle and change rate of tidal force, and contrasting their rupture types, we find that in 6 of 11 reverse faulting earthquakes, the angles between the direction of the horizontal tid...By calculating the azimuth, phase angle and change rate of tidal force, and contrasting their rupture types, we find that in 6 of 11 reverse faulting earthquakes, the angles between the direction of the horizontal tidal force and compressive principal stress are within 33°, the vertical phase angles of all 8 strike-slip earthquakes are in the upward peak section and the vertical phase angles of two extensional normal faulting earthquakes are in the downward peak section. According to the above statistics, the mechanism of tidal force triggering of the Wenchnan Ms8. 0 Earthquake and its strong aftershocks is discussed.展开更多
In order to reveal the relationship between water injection in mine wells in the Zigong area and seismicity, we divide the historical earthquakes of ML ≥ 1.2 into 3 phases according to seismicity behavior, and the ET...In order to reveal the relationship between water injection in mine wells in the Zigong area and seismicity, we divide the historical earthquakes of ML ≥ 1.2 into 3 phases according to seismicity behavior, and the ETAS model parameters are then inversed by the POWELL method. The results show that phase 1 and 2, in which there is no water injection, have moderate-to-low ratio of background earthquakes (40 % - 50 % ), and aftershocks are relatively less for a single earthquake sequence. In phase 3, where there is water injection, the aftershocks triggered by foreshocks dominate ( 93. 1% ), and background earthquakes amount only to 6. 9 %, less than those of phase 1 and 2. The results conflict with the existing cognition. To resolve this problem, we propose that the occurrence ratio of background earthquakes in unit time, that is, the p value in ETAS model is used as an indicator of water injection triggered earthquakes. Compared to the first two phases, phase 3 has the largest u value, which illustrates that the water injection has an obvious triggering effect on earthquakes of this region.展开更多
The presented paper exhibits theory of the "gravitational" waves propagation near the Earth surface and in the ocean. There was determined an expression "gravitational" wave which was registered by the gravimeters...The presented paper exhibits theory of the "gravitational" waves propagation near the Earth surface and in the ocean. There was determined an expression "gravitational" wave which was registered by the gravimeters being placed in several points of the Earth globe. Alteration of gravitational field was accompanied by alteration of the "gravitational" wave which has the velocity differing from the velocity of seismic waves. The theoretical model was proved by many experiments realized under registration of the underwater earthquake core by tens of gravimeters being placed in the Earth globe different points. The "gravitational" waves assist to increase the right forecast probability of the beginning tsunami to 50%.展开更多
The flat dilatometer test (DMT) has the potential to be a useful tool in the evaluation of liquefaction potential of soils. In practice, it is necessary to carefully examine existing DMT-based methods for evaluating...The flat dilatometer test (DMT) has the potential to be a useful tool in the evaluation of liquefaction potential of soils. In practice, it is necessary to carefully examine existing DMT-based methods for evaluating liquefaction potential. We con- ducted the DMT and cone penetration test (CPT) in high liquefaction potential areas to examine the existing DMT-based methods for liquefaction potential evaluation. Specifically, the DMT and CPT were conducted side-by-side at each of six in-situ sites, and thus it is feasible to utilize those test results to validate the existing DMT-based methods. The DMT parameter, horizontal stress index (KD), is used as an indicator for estimating liquefaction resistance of soils in terms of cyclic resistance ratio (CRR). The analysis results revealed that the existing KD-based liquefaction evaluation methods would overestimate the CRR of soils, which leads to overestimation of the factor of safety against liquefaction. Also, the estimations of DMT-KI~ values by using the CPT-qc as well as the correlation between DMT-KD and CPT-qc proposed by the previous studies would be significantly smaller than field measurements. The results reflected that further validation of the existing DMT-based methods for liquefaction evaluation is desirable.展开更多
基金This work was supported by the Nation’s Natural Science Found of China (No.10373017) and the Chinese Astronomical Committee Foundation.
文摘The method of commensurability was used by the authors to predict the great earthquake of magnitude 7.5 that occurred on March 31,2002 in Taiwan 70km away from Hualian. Analyzing the earthquakes of magnitude≥7.0 which occurred in the Hualian area of Taiwan within the 20th century, the authors discovered that the occurrences of the earthquakes are commensurable. The earthquakes of magnitude 7.6 which occurred in Hualian of Taiwan, on September 20th, 1999 and of magnitude 7.5 which occurred 70 km away from Hualian, on March 31th, 2002 appeared at the commensurable point of K=2 and the period times the golden section, respectively. An extended discussion is carried out on the method of commensurability and its implied physical significance, especially on the contribution of the commensurable periodic extension made by Prof. Weng Wenbo.
基金supported by the National Natural Science Foundation of China (Grant No.40930531)the National Key Technology R & D Program (Grant No. 2011BAK12B06)+1 种基金the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection of Chengdu University of Technology (SKLGP2012K012)the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the 51st Chinese PostDoc Science Foundation (Grant No. 2012M511298)
文摘Wudu County in northwestern China frequently experiences large-scale landslide events. High-magnitude earthquakes and heavy rainfall events are the major triggering factors in the region. The aim of this research is to compare and combine landslide suseeptibility assessments of rainfall- triggered and earthquake-triggered landslide events in the study area using Geographical Information System (GIS) and a logistic regression model. Two separate susceptibility maps were produeed using inventories reflecting single landslide-triggering events, i.e., earthquakes and heavy rain storms. Two groups of landslides were utilized: one group eontaining all landslides triggered by extreme rainfall events between 1995 and 2003 and the other group containing slope failures caused by the 2008 Wenchuan earthquake. Subsequently, the individual maps were combined to illustrate the loeations of maximum landslide probability. The use of the resulting three landslide susceptibility maps for landslide forecasting, spatial planning and for developing emergency response actions are discussed. The eombined susceptibility map illustrates the total landslide susceptibility in the study area.
基金supported by the Project of the 12th Five-year National Sci-Tech Support Plan of China (2011BAK12B09)the National Science Foundation of China (41072241)+1 种基金the One Hundred Talents Program of Chinese Academy of Sciences (A1055)the China Geological Survey Project (12120113038000)
文摘The "4.20" Lushan earthquake in Sichuan province, China has induced a large amount of geological hazards and produced abundant loose materials which are prone to post-earthquake rainfall- triggered landslides. A detailed landslide inventory was acquired through post-earthquake emergent field investigation and high resolution remote sensing interpretation. The rainfall analysis was conducted using historical rainfall records during the period from 1951 to 2010. Results indicate that the average annual rainfall distribution is heterogeneous and the largest average annual rainfall occurs in Yucheng district. The Stability Index MAPping (SINMAP) model was adopted to assess and analyze the post- earthquake slope stability under different rainfall scenarios (light rainfall, moderate rainfall, heavy rainfall, and rainstorm). The model parameters were calibrated to reflect the significant influence of strong earthquakes on geological settings. The slope stability maps triggered by different rainfall scenarios were produced at a regional scale. The effect of different rainfall conditions on the slope stability is discussed. The expanding trend of the unstable area was quantitatively assessed with the different critical rainfall intensity. They provide a new insight into the spatial distribution and characteristics of post- earthquake rainfall-triggered landslides in the Lushan seismic area. An increase of rainfall intensity results in a significant increase heterogeneous distribution strongly correlated with of unstable area. The of slope instability is the distribution of earthquake intensity in spite of different rainfall conditions. The results suggest that the both seismic intensity and rainfall are two crucial factors for post- earthquake slope stability. This study provides important references for landslide prevention and mitigation in the Lushan area after earthquake.
基金partly supported by the National Natural Science Foundation of China (Grant Nos. 41172260)the Ministry of Science and Technology of the People’s Republic of China (2011BAK12B02) the National Basic Research Program of China (973 Program) (Grant No. 2008CB425801)
文摘Earthquake-triggered landslides are a major geological hazard in the eastern Tibetan Plateau, and have prolonged impact on earth surface processes and fluvial system. To determine how long co-seismic landslides affect basins, a massive number of landslides existing in Qionghai Lake Basin were investigated for landslide distribution characteristics and geomorphological evidences, with further comparison and analysis using historic seismic analog method. The landslides found in Qionghai Lake Basin showed clear features of seismic triggering with strongly controlled by Zemuhe fault. These landslides are still active at present. Some new slides generally occur in ancient slope failure zones causing serious secondary hazards in recent years. In this study we strengthen the idea that the landslides triggered by the 185o Xichang earthquake (Ms7.5) have long term activity and prolonged impact on the mountain disasters with a period of more than 16o years. Our results support growing evidence that coseismic landslides have a prolonged effect on secondary disasters in a basin, and invite more careful consideration of the relationship between current basin condition and landslide history for a longer period.
基金supported by the National Basic Research Program"973"Project of the Ministry of Science and Technology of the People’s Republic of China(GrantNo.2013CB733202)theNational Key Technology R&D Program(Grant No.2011BAK12B01)+1 种基金the Young Foundation of NationalNatural Science of China(Grant No.41202210)the National Science Fund for DistinguishedYoung Scholars(Grant No.41225011)
文摘The primary objective of landslide susceptibility mapping is the prediction of potential landslides in landslide-prone areas. The predictive power of a landslide susceptibility mapping model could be tested in an adjacent area of similar geo- environmental conditions to find out the reliability. Both the 2oo8 Wenchuan Earthquake and the 2o13 Lushan Earthquake occurred in the Longmen Mountain seismic zone, with similar topographical and geological conditions. The two earthquakes are both featured by thrust fault and similar seismic mechanism This paper adopted the susceptibility mapping model of co-seismic landslides triggered by Wenchuan earthquake to predict the spatial distribution of landslides induced by Lushan earthquake. Six influencing parameters were taken into consideration: distance from the seismic fault, slope gradient, lithology, distance from drainage, elevation and Peak Ground Acceleration (PGA). The preliminary results suggested that the zones with high susceptibility of co- seismic landslides were mainly distributed in the mountainous areas of Lushan, Baoxing and Tianquan counties. The co-seismic landslide susceptibility map was completed in two days after the quake and sent to the field investigators to provide guidance for rescue and relief work. The predictive power of the susceptibility map was validated by ROC curve analysis method using 2o37 co-seismic landslides in the epicenter area. The AUC value of o.71o indicated that the susceptibility model derived from Wenchuan Earthquake landslides showed good accuracy inpredicting the landslides triggered by Lushan earthquake.
基金supported by the National Key Fundamental Research Program of China (973) (2008CB425802)The Project Group of Knowledge Innovation Program of Chinese Academy Sciences (KZCX2-YW-Q03-5)
文摘Field investigations and aerial photography after the earthquake of May 12, 2008 show a large number of geo-hazards in the zone of extreme earthquake effects. In particular, landslides and debris flows, the geo-hazards that most threaten post-disaster reconstruction, are widely distributed. We describe the characteristics of these geo-hazards in Beichuan County using high-resolution remote sensing of landslide distribution, and the relationships between the area and volume of landslides and the peak-discharges of debris flows both pre- and post-earthquake. The results show: 1) The concentration (defined as the number of landslide sources per unit area: Lc) of earthquake- triggered landslides is inversely correlated with distance from the earthquake (DF) fault. The relationship is described by the following equation: Lc = 3.2264exp(-0.0831DF) (R2 = 0.9246); 2) 87 % of the earthquake-triggered landslides were less than 15× 10^4 m2 in area, and these accounted only for 5o% of the total area; 84% of the landslide volumes were less than 60×10^4 m3, and these accounted only for 50% of the total volume. The probability densities of the area and volume distributions are correlated: landslide abundance increases with landslide area and volume up to maximum values of 5 ×10^4m2 and 30 ×10^4 m3, respectively, and then decreases exponentially. 3) The area (AL) and volume (VL) of earthquake-triggered landslides are correlated as described with the following equation: VL=6.5138AL1.0227 (R2 = 0.9231); 4)Characteristics of the debris flows changed after the earthquake because of the large amount of landslide material deposited in the gullies. Consequently, debris flow peak-discharge increased following the earthquake as described with the following equation: Vpost = 0.8421Vprel-0972 (R2 = 0.9821) (Vpre is the peak discharge ofpre-earthquake flows and the Vpost is the peak discharge of post-earthquake flows). We obtained the distribution of the landslides based on the above analyses, as well as the magnitude of both the landslides and the post-earthquake debris flows. The results can be useful for guiding post-disaster reconstruction and recovery efforts, and for the future mitigation of these geo-hazards. However, the equations presented are not recommended for use in site-specific designs. Rather, we recommend their use for mapping regional seismic landslide hazards or for the preliminary, rapid screening of sites.
文摘Dongsha Island and the adjacent sea area locate at the northern continental margin of the South China Sea (SCS), and is connected to the east by the Manila Trench. Analyses of seismic stratigraphy and gravity, magnetic and drilling wells data led to the discovery of three post fault sequences (V, VI, VII). Extensive tectonic uplift, magma activity and erosion occurred in Dongsha Island and the adjacent area, where most of the faults in the northeastern SCS were still active during Pliocene and Quaternary. Two groups of faults trending NEE and NW were developed during Late Cenozoic. We conclude that three important tectonic movements, especially Dongsha movement (4.4-5.2 Ma) and Liuhua movement (1.4-1.89 Ma), controlled the structural framework in the Dongsha rise; whose deformation in the east is stronger than that in the west and whose stress field variation suggests that the tectonic uplift in the study area contributed to magmato tectonic events correlated to the main collision phases between the East China and Taiwan 5-3 and 3-0 Ma ago.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No. 40802067)the National Basic Research Program of China (973 program, Grant No.2008CB425803)+1 种基金the Basic Scientific Research Operating Expenses of Institute of Geomechanics, CAGS (Grant No. DZLXJK200805)the Land and Natural Resources of China (Grant No. 1212010914025)
文摘Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.
基金supported by State Key Fundamental Research Program (973) project (2008CB425802)the National natural Science Foundation of China (Grant No. 40801009)
文摘The Wenchuan earthquake on May 12,2008 caused numerous collapses,landslides,barrier lakes,and debris flows.Landslide susceptibility mapping is important for evaluation of environmental capacity and also as a guide for post-earthquake reconstruction.In this paper,a logistic regression model was developed within the framework of GIS to map landslide susceptibility.Qingchuan County,a heavily affected area,was selected for the study.Distribution of landslides was prepared by interpretation of multi-temporal and multi-resolution remote sensing images(ADS40 aerial imagery,SPOT5 imagery and TM imagery,etc.) and field surveys.The Certainly Factor method was used to find the influencial factors,indicating that lithologic groups,distance from major faults,slope angle,profile curvature,and altitude are the dominant factors influencing landslides.The weight of each factor was determined using a binomial logistic regression model.Landslide susceptibility mapping was based on spatial overlay analysis and divided into five classes.Major faults have the most significant impact,and landslides will occur most likely in areas near the faults.Onethird of the area has a high or very high susceptibility,located in the northeast,south and southwest,including 65.3% of all landslides coincident with the earthquake.The susceptibility map can reveal the likelihood of future failures,and it will be useful for planners during the rebuilding process and for future zoning issues.
基金supported by the 973 Program of China (Grant No.2008CB425802)the International Cooperation Program of the Ministry of Science and Technology of China (Grant No.2007DFA21150 and 2009DFB20196)
文摘Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide hazard maps and make them available to the public in advance of an earthquake.Future construction can then be built according to the level of hazard and existing structures can be retrofit as necessary.During recent years various approaches have been made to develop landslide hazard maps using statistical analysis or physical models.However,these methods have limitations.This study introduces a new GIS-based approach,using the contributing weight model,to evaluate the hazard of seismically-induced landslides.In this study,the city and surrounding area of Dujiangyan was selected as the research area because of its moderate-high seismic activity.The parameters incorporated into the model that related to the probability of landslide occurrence were:slope gradient,slope aspect,geomorphology,lithology,base level,surface roughness,earthquake intensity,fault proximity,drainage proximity,and road proximity.The parameters were converted into raster data format with a resolution of 25×25m2 pixels.Analysis of the GIS correlations shows that the highest earthquake-induced landslide hazard areas are mainly in the hills and in some of the moderately steep mountainous areas of central Dujiangyan.The highest hazard zone covers an area of 11.1% of the study area,and the density distribution of seismically-induced landslides was 3.025/km2 from the 2008 Wenchuan earthquake.The moderately hazardous areas are mainly distributed within the moderately steep mountainous regions of the northern and southeastern parts of the study area and the hills of the northeastern part;covering 32.0% of the study area and with a density distribution of 2.123/km2 resulting from the Wenchuan earthquake.The lowest hazard areas are mainly distributed in the topographically flat plain in the northeastern part and some of the relatively gently slopes in the moderately steep mountainous areas of the northern part of Dujiangyan and the surrounding area.The lowest hazard areas cover 56.9% of the study area and exhibited landslide densities of 0.941/km2 and less from the Wenchuan earthquake.The quality of the hazard map was validated using a comparison with the distribution of landslides that were cataloged as occurring from the Wenchuan earthquake.43.1% of the study area consists of high and moderate hazardous zones,and these regions include 83.5% of landslides caused by the Wenchuan earthquake.The successful analysis shows that the contributing weight model can be effective for earthquake-triggered landslide hazard appraisal.The model's results can provide the basis for risk management and regional planning is.
基金sponsored under the Seismic Situation Tracing Directional Work Project in Contract System in 2009 (20090203012009010107),China
文摘By calculating the azimuth, phase angle and change rate of tidal force, and contrasting their rupture types, we find that in 6 of 11 reverse faulting earthquakes, the angles between the direction of the horizontal tidal force and compressive principal stress are within 33°, the vertical phase angles of all 8 strike-slip earthquakes are in the upward peak section and the vertical phase angles of two extensional normal faulting earthquakes are in the downward peak section. According to the above statistics, the mechanism of tidal force triggering of the Wenchnan Ms8. 0 Earthquake and its strong aftershocks is discussed.
基金supported by "Study on Strong Earthquake Risk in Southern Region of Longmenshan Fault,Huayingshan Fault and Border Area of Sichuan and Yunnan Provinces",Department of Earthquake Monitoring and Prediction,China Earthquake Administration
文摘In order to reveal the relationship between water injection in mine wells in the Zigong area and seismicity, we divide the historical earthquakes of ML ≥ 1.2 into 3 phases according to seismicity behavior, and the ETAS model parameters are then inversed by the POWELL method. The results show that phase 1 and 2, in which there is no water injection, have moderate-to-low ratio of background earthquakes (40 % - 50 % ), and aftershocks are relatively less for a single earthquake sequence. In phase 3, where there is water injection, the aftershocks triggered by foreshocks dominate ( 93. 1% ), and background earthquakes amount only to 6. 9 %, less than those of phase 1 and 2. The results conflict with the existing cognition. To resolve this problem, we propose that the occurrence ratio of background earthquakes in unit time, that is, the p value in ETAS model is used as an indicator of water injection triggered earthquakes. Compared to the first two phases, phase 3 has the largest u value, which illustrates that the water injection has an obvious triggering effect on earthquakes of this region.
文摘The presented paper exhibits theory of the "gravitational" waves propagation near the Earth surface and in the ocean. There was determined an expression "gravitational" wave which was registered by the gravimeters being placed in several points of the Earth globe. Alteration of gravitational field was accompanied by alteration of the "gravitational" wave which has the velocity differing from the velocity of seismic waves. The theoretical model was proved by many experiments realized under registration of the underwater earthquake core by tens of gravimeters being placed in the Earth globe different points. The "gravitational" waves assist to increase the right forecast probability of the beginning tsunami to 50%.
基金Project (No. NSC 98-2221-E-006-198) supported by the National Science Council
文摘The flat dilatometer test (DMT) has the potential to be a useful tool in the evaluation of liquefaction potential of soils. In practice, it is necessary to carefully examine existing DMT-based methods for evaluating liquefaction potential. We con- ducted the DMT and cone penetration test (CPT) in high liquefaction potential areas to examine the existing DMT-based methods for liquefaction potential evaluation. Specifically, the DMT and CPT were conducted side-by-side at each of six in-situ sites, and thus it is feasible to utilize those test results to validate the existing DMT-based methods. The DMT parameter, horizontal stress index (KD), is used as an indicator for estimating liquefaction resistance of soils in terms of cyclic resistance ratio (CRR). The analysis results revealed that the existing KD-based liquefaction evaluation methods would overestimate the CRR of soils, which leads to overestimation of the factor of safety against liquefaction. Also, the estimations of DMT-KI~ values by using the CPT-qc as well as the correlation between DMT-KD and CPT-qc proposed by the previous studies would be significantly smaller than field measurements. The results reflected that further validation of the existing DMT-based methods for liquefaction evaluation is desirable.