The microstructure,dielectric and ferroelectric properties of(1-y)Ba(Zr0.1Ti0.9)O3-yBa(Zn1/3Nb2/3)O3(y=0-0.05)ceramics prepared by traditional solid state method were investigated by X-ray diffractometer,scanning elec...The microstructure,dielectric and ferroelectric properties of(1-y)Ba(Zr0.1Ti0.9)O3-yBa(Zn1/3Nb2/3)O3(y=0-0.05)ceramics prepared by traditional solid state method were investigated by X-ray diffractometer,scanning electron microscope,electric parameter testing system and ferroelectric tester.It is found that the barium zirconate titanate based ceramics are single-phase perovskites as y increases up to 0.05 and their average grain size decreases with the increase of y.The permittivity maximumεr,max is suppressed from 8948 to 1611 at 1 kHz with increasing y,and the ferroelectric-paraelectric phase transition temperature Tm decreases from 93 to-89℃at 1 kHz as y increases.The composition-induced diffuse phase transition is enhanced with increasingy.The relaxor-like ferroelectric behavior with a strong frequency dispersion of Tm and permittivity at T<Tm accompanied by a strong diffuse phase transition is found for the system with high y value.The remnant polarization decreases with increasing y,while the coercive field decreases remarkably and then increases with the increase of y.展开更多
The environmentally-friendly(1-x)Ba(Zr_(1/3)Ti_(2/3))O_(3)-xBaMg_(0.1)Ta_(0.9))O_(3)(x=0,0.02,0.04,0.06,0.08)relaxor ferroelectric ceramics were prepared by the conventional solid-state method and sintered in air at 1...The environmentally-friendly(1-x)Ba(Zr_(1/3)Ti_(2/3))O_(3)-xBaMg_(0.1)Ta_(0.9))O_(3)(x=0,0.02,0.04,0.06,0.08)relaxor ferroelectric ceramics were prepared by the conventional solid-state method and sintered in air at 1400°C for 2 h.SEM and XRD analyses were utilized to study the surface morphologies and the crystalline structures,respectively.The effects of BaMg_(0.1)Ta_(0.9))O_(3)on the phase transformation,dielectric and ferroelectric properties of Ba(Zr_(1/3)Ti_(2/3))O_(3)ceramics were also investigated.It is found that the average grain size of(1-x)Ba(Zr_(1/3)Ti_(2/3))O_(3)-xBaMg_(0.1)Ta_(0.9))O_(3)(BZT-BMT)perovskite single-phase ceramics decreases as the content of BaMg_(0.1)Ta_(0.9))O_(3)(BMT)increases.The relaxor ferroelectric behavior with diffuse phase transition and well-defined frequency dispersion of dielectric maximum temperature is found for the ceramic with increasing x values.0.98BZT-0.02BMT ceramic shows very good dielectric properties with the relative permittivity and the dielectric loss,measured at 100 k Hz as 6034 and 0.01399 respectively at room temperature.Both remnant polarization and coercive field decreased with increasing BMT content,indicating a transition from the ferroelectric phase to the paraelectric phase at room temperature.展开更多
基金sponsored by the National Demonstration Center for Experimental Materials Science and Engineering Education (Jiangsu University of Science and Technology, China)the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, China
文摘The microstructure,dielectric and ferroelectric properties of(1-y)Ba(Zr0.1Ti0.9)O3-yBa(Zn1/3Nb2/3)O3(y=0-0.05)ceramics prepared by traditional solid state method were investigated by X-ray diffractometer,scanning electron microscope,electric parameter testing system and ferroelectric tester.It is found that the barium zirconate titanate based ceramics are single-phase perovskites as y increases up to 0.05 and their average grain size decreases with the increase of y.The permittivity maximumεr,max is suppressed from 8948 to 1611 at 1 kHz with increasing y,and the ferroelectric-paraelectric phase transition temperature Tm decreases from 93 to-89℃at 1 kHz as y increases.The composition-induced diffuse phase transition is enhanced with increasingy.The relaxor-like ferroelectric behavior with a strong frequency dispersion of Tm and permittivity at T<Tm accompanied by a strong diffuse phase transition is found for the system with high y value.The remnant polarization decreases with increasing y,while the coercive field decreases remarkably and then increases with the increase of y.
基金fully sponsored by the National Demonstration Center for Experimental Materials Science and Engineering Education(Jiangsu University of Science and Technology,China)funded by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,China。
文摘The environmentally-friendly(1-x)Ba(Zr_(1/3)Ti_(2/3))O_(3)-xBaMg_(0.1)Ta_(0.9))O_(3)(x=0,0.02,0.04,0.06,0.08)relaxor ferroelectric ceramics were prepared by the conventional solid-state method and sintered in air at 1400°C for 2 h.SEM and XRD analyses were utilized to study the surface morphologies and the crystalline structures,respectively.The effects of BaMg_(0.1)Ta_(0.9))O_(3)on the phase transformation,dielectric and ferroelectric properties of Ba(Zr_(1/3)Ti_(2/3))O_(3)ceramics were also investigated.It is found that the average grain size of(1-x)Ba(Zr_(1/3)Ti_(2/3))O_(3)-xBaMg_(0.1)Ta_(0.9))O_(3)(BZT-BMT)perovskite single-phase ceramics decreases as the content of BaMg_(0.1)Ta_(0.9))O_(3)(BMT)increases.The relaxor ferroelectric behavior with diffuse phase transition and well-defined frequency dispersion of dielectric maximum temperature is found for the ceramic with increasing x values.0.98BZT-0.02BMT ceramic shows very good dielectric properties with the relative permittivity and the dielectric loss,measured at 100 k Hz as 6034 and 0.01399 respectively at room temperature.Both remnant polarization and coercive field decreased with increasing BMT content,indicating a transition from the ferroelectric phase to the paraelectric phase at room temperature.