A spiral fluidity test model of superalloys with 10 mm in height and 3 mm in thickness was designed to evaluate the fluidity of two distinct Ni-based superalloys IN718 and IN939.The factors influencing fluidity are as...A spiral fluidity test model of superalloys with 10 mm in height and 3 mm in thickness was designed to evaluate the fluidity of two distinct Ni-based superalloys IN718 and IN939.The factors influencing fluidity are ascertained through comparative analysis utilizing methodologies such as JMat Pro,differential scanning calorimetry and high-temperature confocal laser scanning microscopy.The results show that under identical testing conditions,the fluidity of the IN939 superalloy surpasses that of the IN718 superalloy.When subjected to the same temperature,the melt viscosity and surface tension of IN939 superalloy are considerably reduced relative to those of IN718 superalloy,which is beneficial to improving the melt fluidity.Furthermore,the liquidus temperature and solidification range for the IN939 superalloy are both smaller compared with those of the IN718 superalloy.This condition proves advantageous in delaying dendrite coherency,thereby improving fluidity.展开更多
In molten phase metallurgical processes,mixing via gas injection has a vital role in obtaining a homogeneous product.The efficiency of mixing depends on operational variables such as gas flow rate and slag height as w...In molten phase metallurgical processes,mixing via gas injection has a vital role in obtaining a homogeneous product.The efficiency of mixing depends on operational variables such as gas flow rate and slag height as well as physical properties of the molten phases.A numerical simulation is conducted to study the above parameters in the flow behavior of a bottom-blown bath.The molten metal and the slag are modeled by water and oil,respectively.The numerical results,particularly the mixing time,are validated against experimental data.The results show that mixing time increases as the slag height increases and decreases as the density of the slag material increases.The mixing time decreases with an increase in the density of the primary phase;however,it increases as the surface tension between air and water increases.A case with properties close to a real molten metal is also modeled.The performance of the system is influenced by the momentum rather than the dissipative forces.Thus,the effect of the density of the molten phase on the mixing process is more pronounced compared to the effect of the surface tension between the air and the molten phase.展开更多
Structural and thermal sensitivity of Cu(60-x)Zr(30+x) Ti 10 (x=0,5,and 10 at%) amorphous alloys to the application of tension was investigated. The structural sensitivity to tension decreases with increasing Cu conte...Structural and thermal sensitivity of Cu(60-x)Zr(30+x) Ti 10 (x=0,5,and 10 at%) amorphous alloys to the application of tension was investigated. The structural sensitivity to tension decreases with increasing Cu content. The crystallization enthalpy increases with increasing excess free volume. The characteristic temperatures of the tensile samples can surpass those of the as-cast ones under a critical heating rate which differs in the Cu content. The increase of the excess free volume significantly influences the glass transition and crystallization procedures.展开更多
基金support from the National Natural Science Foundation of China(Nos.52031012,51904218)。
文摘A spiral fluidity test model of superalloys with 10 mm in height and 3 mm in thickness was designed to evaluate the fluidity of two distinct Ni-based superalloys IN718 and IN939.The factors influencing fluidity are ascertained through comparative analysis utilizing methodologies such as JMat Pro,differential scanning calorimetry and high-temperature confocal laser scanning microscopy.The results show that under identical testing conditions,the fluidity of the IN939 superalloy surpasses that of the IN718 superalloy.When subjected to the same temperature,the melt viscosity and surface tension of IN939 superalloy are considerably reduced relative to those of IN718 superalloy,which is beneficial to improving the melt fluidity.Furthermore,the liquidus temperature and solidification range for the IN939 superalloy are both smaller compared with those of the IN718 superalloy.This condition proves advantageous in delaying dendrite coherency,thereby improving fluidity.
文摘In molten phase metallurgical processes,mixing via gas injection has a vital role in obtaining a homogeneous product.The efficiency of mixing depends on operational variables such as gas flow rate and slag height as well as physical properties of the molten phases.A numerical simulation is conducted to study the above parameters in the flow behavior of a bottom-blown bath.The molten metal and the slag are modeled by water and oil,respectively.The numerical results,particularly the mixing time,are validated against experimental data.The results show that mixing time increases as the slag height increases and decreases as the density of the slag material increases.The mixing time decreases with an increase in the density of the primary phase;however,it increases as the surface tension between air and water increases.A case with properties close to a real molten metal is also modeled.The performance of the system is influenced by the momentum rather than the dissipative forces.Thus,the effect of the density of the molten phase on the mixing process is more pronounced compared to the effect of the surface tension between the air and the molten phase.
基金the National Natural Science Foundation (Grant No. 50874045)the Scientific Research Fund of the Hunan Provincial Education Department (Grant No. 10A044)
文摘Structural and thermal sensitivity of Cu(60-x)Zr(30+x) Ti 10 (x=0,5,and 10 at%) amorphous alloys to the application of tension was investigated. The structural sensitivity to tension decreases with increasing Cu content. The crystallization enthalpy increases with increasing excess free volume. The characteristic temperatures of the tensile samples can surpass those of the as-cast ones under a critical heating rate which differs in the Cu content. The increase of the excess free volume significantly influences the glass transition and crystallization procedures.