The Zhangjiakou-Bohai Sea fault zone located in the northern part of the North China region is a seismotectonic zone controlling the present-day strong earthquake activities. Under the effect of regional principal com...The Zhangjiakou-Bohai Sea fault zone located in the northern part of the North China region is a seismotectonic zone controlling the present-day strong earthquake activities. Under the effect of regional principal compressive stress with the direction of NEE-SWW, a series of NE-trending active tectonic zones have developed, which form a group of conjugated shear fracturing systems and control the occurrence of the present-day strong earthquakes. The feature of crustal deformation around this fault zone is studied in the paper. The long-term crustal deformation pattern from GPS measurements exhibits a relatively complete left-lateral strike-slip movement along the active fault zone. However, studies on crustal deformation by stages indicate that a series of NE-trending large-scale anomalous gradient zones have appeared along the Zhangjiakou-Bohai Sea fault zone before moderately strong earthquakes. They are represented respectively by the activities of the Tangshan-Hejian, the Sanhe-Laishui and the Yanhuai-Shanxi seismotectonic zones. This may indicate the occurrence of med-term precursors to moderately strong earthquakes along Zhangjiakou-Bohai Sea zone. The results in the paper show that the crustal deformation pattern before strong earthquake reveals the information of strain status in the deep seismogenic zone, while the chaotic pattern after the occurrence of strong earthquake represents the adjustment of the covering strata.展开更多
文摘The Zhangjiakou-Bohai Sea fault zone located in the northern part of the North China region is a seismotectonic zone controlling the present-day strong earthquake activities. Under the effect of regional principal compressive stress with the direction of NEE-SWW, a series of NE-trending active tectonic zones have developed, which form a group of conjugated shear fracturing systems and control the occurrence of the present-day strong earthquakes. The feature of crustal deformation around this fault zone is studied in the paper. The long-term crustal deformation pattern from GPS measurements exhibits a relatively complete left-lateral strike-slip movement along the active fault zone. However, studies on crustal deformation by stages indicate that a series of NE-trending large-scale anomalous gradient zones have appeared along the Zhangjiakou-Bohai Sea fault zone before moderately strong earthquakes. They are represented respectively by the activities of the Tangshan-Hejian, the Sanhe-Laishui and the Yanhuai-Shanxi seismotectonic zones. This may indicate the occurrence of med-term precursors to moderately strong earthquakes along Zhangjiakou-Bohai Sea zone. The results in the paper show that the crustal deformation pattern before strong earthquake reveals the information of strain status in the deep seismogenic zone, while the chaotic pattern after the occurrence of strong earthquake represents the adjustment of the covering strata.