期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
特征有效提取的自适应核特征子空间方法
被引量:
2
1
作者
张朝阳
田铮
《模式识别与人工智能》
EI
CSCD
北大核心
2013年第4期392-401,共10页
基于核的主成分分析(KPCA)方法能提取数据的非线性特征,但特征提取的效率却与训练样本集合的容量成反比.文中提出一种特征提取的自适应核特征子空间方法来快速有效地提取特征.该方法和KPCA方法在理论分析框架上是一致的,但通过自适应的...
基于核的主成分分析(KPCA)方法能提取数据的非线性特征,但特征提取的效率却与训练样本集合的容量成反比.文中提出一种特征提取的自适应核特征子空间方法来快速有效地提取特征.该方法和KPCA方法在理论分析框架上是一致的,但通过自适应的选取核子空间的张成向量,能在提高特征提取效率的同时不影响特征提取的精度.针对模拟数据和MNIST数据的实验结果表明文中方法优于经典KPCA方法和参考方法.
展开更多
关键词
核主成分分析(KPCA)
特征提取
核子空间
张成向量
下载PDF
职称材料
题名
特征有效提取的自适应核特征子空间方法
被引量:
2
1
作者
张朝阳
田铮
机构
西北工业大学理学院
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2013年第4期392-401,共10页
基金
国家自然科学基金项目(No.10926197
60972150)
中国留学基金委研究生项目(No.2011629111)资助
文摘
基于核的主成分分析(KPCA)方法能提取数据的非线性特征,但特征提取的效率却与训练样本集合的容量成反比.文中提出一种特征提取的自适应核特征子空间方法来快速有效地提取特征.该方法和KPCA方法在理论分析框架上是一致的,但通过自适应的选取核子空间的张成向量,能在提高特征提取效率的同时不影响特征提取的精度.针对模拟数据和MNIST数据的实验结果表明文中方法优于经典KPCA方法和参考方法.
关键词
核主成分分析(KPCA)
特征提取
核子空间
张成向量
Keywords
Kernel Principal Component Analysis (KPCA), Feature Extraction, Kernel FeatureSubspace, Spanning Vector
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
特征有效提取的自适应核特征子空间方法
张朝阳
田铮
《模式识别与人工智能》
EI
CSCD
北大核心
2013
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部