The vacuum residual from Iranian Light crude oil are separated into a series of 16 narrow fractions according to the molecular weight by the supercritical fluid extraction and fractional (SFEF) technology. The chemica...The vacuum residual from Iranian Light crude oil are separated into a series of 16 narrow fractions according to the molecular weight by the supercritical fluid extraction and fractional (SFEF) technology. The chemical element and the UV spectrum of each fraction are analyzed. The effects of several factors on the interfacial tension are investigated, which are the fraction concentration in oil phase, the ratio of oil component, the salts dissolved in the water phase and the pH value. The interfacial tension decreases rapidly as the concentration of the residual fraction in the oil increases, showing a higher interfacial activity of the fraction. The interfacial tension changes, as the amount of absorption or the state of the fractions in the interface changes resulting from different ratios of oil, different kinds or concentrations of salts in water, and different pH values. It is concluded that the interfacial tension changes regularly, corresponding to the regular molecular parameters of the vacuum residual fractions.展开更多
Under the guidance of strain tolerance, a new combination method for crude oil-degrading bacterial consortium was studied. Firstly, more than 50 efficient crude oil-degrading and biosurfactant producing bacteria were ...Under the guidance of strain tolerance, a new combination method for crude oil-degrading bacterial consortium was studied. Firstly, more than 50 efficient crude oil-degrading and biosurfactant producing bacteria were isolated from petroleum-contaminated soil and water in Tianjin Binhai New Area Oil field, China. Twenty-four of them were selected for further study. These strains were identified as belonging Pseudornonas aeruginosa, Bacillus subtilis, Brevibacillus brevis, Achrornobacter sp., Acinetobacter venetianus, Lysinibacillus rnacroides, Klebsiella oxytoca, Stenotrophornonas rhizophila, Rhodococcus sp. and Bacillus thuringiensis. A shake-flask degradation test revealed that 12 of these strains could degrade over 50% of 1% crude oil concentration in 7 d. Of these, 8 strains were able to produce biosurfactants. Furthermore, environmental tolerance experiments indicated that the majority of the strains had the ability to adapt to extreme environments including high temperatures, alkaline en- vironments and high salinity environments. A mixed bacterial agent comprising the strains WB2, W2, W3 and HA was developed based on the environmental tolerance tests and subjected to the pilot-scale degradation test indicating that this bacterial agent could degrade 85.2% of 0.8% crude oil concentration in 60 d. Our results suggest that the application of this mixed agent could remediate crude oil polluted soils in saline and alkaline environments.展开更多
This article is aimed to discuss the impact of using two different kinds of surfactant in enhancing oil recovery in heterogeneous reservoirs. With the background of Jidong oilfield, Rui Feng surfactant which could rea...This article is aimed to discuss the impact of using two different kinds of surfactant in enhancing oil recovery in heterogeneous reservoirs. With the background of Jidong oilfield, Rui Feng surfactant which could reach ultra-low interracial tension and combination surfactant RZ-JD80 with strong emulsifying property are chosen to do oil displacement and profile control-oil displacement experiment in homogeneous core and heterogeneous core respectively. The experiment is aimed to study the effect of oil displacement by injecting surfactant individually and the effect after injecting different profile control agent slug before surfactant flooding in heterogeneous cores. The results suggest that injecting Rui Feng surfactant and RZ-JD80 individually could enhance the oil displacement efficiency about 15 percentage points for homogeneous core. For strongly heterogeneous core, it is low efficiency by using either of these two surfactants individually. However, if injected a very little profile control agent slug before surfactant flooding, both of these two kinds of surfactant could enhance the oil recovery by different degree, especially, polymer microsphere plugging^RZ-JD80 flooding composite technology is more adaptable to Gao-63 reservoir. This technology could increase the recovery by 18.52 percentage points aRer surfactant flooding.展开更多
Problems experienced during Floating Production, Storage and Offioading (FPSO) tandem offloading operations were investigated. The aim of this research was to improve the reliability of such systems, and it needed a...Problems experienced during Floating Production, Storage and Offioading (FPSO) tandem offloading operations were investigated. The aim of this research was to improve the reliability of such systems, and it needed a means to assess them. Time-domain simulation and analysis of offioading systems was performed using the multi-body mooring software ARIANE 7.0. Hydrodynamic interaction between the vessels was considered. The responses of the offioading system in different loading cases, different parameters of offioading hawsers and the effects of challenging environmental conditions were calculated. There was a focus on the problems of relative motion between the two bodies and its effects on the intensity of hawser forces. Minimum relative distance, maximum relative headings and maximum tension in the hawsers of offloading systems were obtained by time-domain analysis. The time-domain analysis was effective and comparative study can be used to optimize parameters of the system and extend operating limits.展开更多
基金Supported by the National Key Basic Research Programme (No.973-G1999022505),University of Petroleum Basic Research Fund(No.ZX9904)
文摘The vacuum residual from Iranian Light crude oil are separated into a series of 16 narrow fractions according to the molecular weight by the supercritical fluid extraction and fractional (SFEF) technology. The chemical element and the UV spectrum of each fraction are analyzed. The effects of several factors on the interfacial tension are investigated, which are the fraction concentration in oil phase, the ratio of oil component, the salts dissolved in the water phase and the pH value. The interfacial tension decreases rapidly as the concentration of the residual fraction in the oil increases, showing a higher interfacial activity of the fraction. The interfacial tension changes, as the amount of absorption or the state of the fractions in the interface changes resulting from different ratios of oil, different kinds or concentrations of salts in water, and different pH values. It is concluded that the interfacial tension changes regularly, corresponding to the regular molecular parameters of the vacuum residual fractions.
基金Supported by the National Basic Research Program of China(“973”Program:2014CB745100)the National Natural Science Foundation of China(21576197)+2 种基金Tianjin Research Program of Application Foundation and Advanced Technology(14JCQNJC06700)the Major Research Plan of Tianjin(16YFXTSF00460)Tianjin Penglai 19-3 Oil Spill Accident Compensation Project(19-3BC2014-03)
文摘Under the guidance of strain tolerance, a new combination method for crude oil-degrading bacterial consortium was studied. Firstly, more than 50 efficient crude oil-degrading and biosurfactant producing bacteria were isolated from petroleum-contaminated soil and water in Tianjin Binhai New Area Oil field, China. Twenty-four of them were selected for further study. These strains were identified as belonging Pseudornonas aeruginosa, Bacillus subtilis, Brevibacillus brevis, Achrornobacter sp., Acinetobacter venetianus, Lysinibacillus rnacroides, Klebsiella oxytoca, Stenotrophornonas rhizophila, Rhodococcus sp. and Bacillus thuringiensis. A shake-flask degradation test revealed that 12 of these strains could degrade over 50% of 1% crude oil concentration in 7 d. Of these, 8 strains were able to produce biosurfactants. Furthermore, environmental tolerance experiments indicated that the majority of the strains had the ability to adapt to extreme environments including high temperatures, alkaline en- vironments and high salinity environments. A mixed bacterial agent comprising the strains WB2, W2, W3 and HA was developed based on the environmental tolerance tests and subjected to the pilot-scale degradation test indicating that this bacterial agent could degrade 85.2% of 0.8% crude oil concentration in 60 d. Our results suggest that the application of this mixed agent could remediate crude oil polluted soils in saline and alkaline environments.
文摘This article is aimed to discuss the impact of using two different kinds of surfactant in enhancing oil recovery in heterogeneous reservoirs. With the background of Jidong oilfield, Rui Feng surfactant which could reach ultra-low interracial tension and combination surfactant RZ-JD80 with strong emulsifying property are chosen to do oil displacement and profile control-oil displacement experiment in homogeneous core and heterogeneous core respectively. The experiment is aimed to study the effect of oil displacement by injecting surfactant individually and the effect after injecting different profile control agent slug before surfactant flooding in heterogeneous cores. The results suggest that injecting Rui Feng surfactant and RZ-JD80 individually could enhance the oil displacement efficiency about 15 percentage points for homogeneous core. For strongly heterogeneous core, it is low efficiency by using either of these two surfactants individually. However, if injected a very little profile control agent slug before surfactant flooding, both of these two kinds of surfactant could enhance the oil recovery by different degree, especially, polymer microsphere plugging^RZ-JD80 flooding composite technology is more adaptable to Gao-63 reservoir. This technology could increase the recovery by 18.52 percentage points aRer surfactant flooding.
基金Supported by China National 111 Project foundation from the State Administration of Foreign Experts Affairs of Chinathe Ministry of Education of China under Grant No.B07019
文摘Problems experienced during Floating Production, Storage and Offioading (FPSO) tandem offloading operations were investigated. The aim of this research was to improve the reliability of such systems, and it needed a means to assess them. Time-domain simulation and analysis of offioading systems was performed using the multi-body mooring software ARIANE 7.0. Hydrodynamic interaction between the vessels was considered. The responses of the offioading system in different loading cases, different parameters of offioading hawsers and the effects of challenging environmental conditions were calculated. There was a focus on the problems of relative motion between the two bodies and its effects on the intensity of hawser forces. Minimum relative distance, maximum relative headings and maximum tension in the hawsers of offloading systems were obtained by time-domain analysis. The time-domain analysis was effective and comparative study can be used to optimize parameters of the system and extend operating limits.