Transport of nonreactive solutes in soils is principally controlled by soil properties, such as particle-size distribution and pore geometry. Surface tension of soil water yields capillary forces that bind the water i...Transport of nonreactive solutes in soils is principally controlled by soil properties, such as particle-size distribution and pore geometry. Surface tension of soil water yields capillary forces that bind the water in the soil pores. Changes in soil water surface tension by contaminants may affect flow of soil water due to decreased capillary forces, caused by lowered soil water surface tension. This study aimed at assessing solute transport in sand columns as affected by effluent surface tension. Miscible displacement (MD) tests were conducted on sand columns repacked with sands sieved from 2.0, 1.0, 0.5 and 0.25 mm screens. The MD tests were conducted with 0.05 M bromide solutions prepared using water with surface tension adjusted to 72.8, 64, 53.5 and 42 dyne/cm2. Obtained breakthrough curves were modeled with the convection-dispersion equation (CDE) model. Coefficient of hydrodynamic dispersion and pore-water velocity responded inconsistently across decreased particle-sizes and water surface tensions and this was attributed to non-uniform effect of lowered effluent surface tension on solute transport in different pore-size distribution.展开更多
The properties of low-modulus(m≤1)sodium silicate and pre-desilication solutions in alkali systems were studied by measuring their electrical conductivity,viscosity,and surface tension.The results show that the prope...The properties of low-modulus(m≤1)sodium silicate and pre-desilication solutions in alkali systems were studied by measuring their electrical conductivity,viscosity,and surface tension.The results show that the property of high concentration pre-desilication solution is similar to that of sodium silicate solution.The electrical conductivity of sodium silicate solution increases with increasing the temperature and silica concentration but decreases with increasing the modulus.Further,the viscosity of the solution increases with increasing the silica concentration and linearly decreases with increasing the temperature,whereas its surface tension gradually decreases with increasing silica concentration and temperature,indicating that the sodium silicate solution is an oligomer with strong surface activity.At room temperature,the electrical conductivity and surface tension of sodium silicate solution are higher than those of pre-desilication solution,whereas its viscosity is smaller than that of pre-desilication solution.A turning point exists at a silica concentration of 44.7 g/L.When the silica concentration is less than 44.7 g/L,the ionic structure of the solution is dominated by monomeric silicate ions.In contrast,when the silica concentration changes from 44.7 to 50 g/L,the migration number of silicate anions significantly decreases.展开更多
In this paper cotton hollow yarns were obtained from the core spun yams which were produced on a little modified conventional experiment ring frame with water soluble staple PVA yam as the core. For comparison, yams w...In this paper cotton hollow yarns were obtained from the core spun yams which were produced on a little modified conventional experiment ring frame with water soluble staple PVA yam as the core. For comparison, yams with same linear densities, same twists of the sheath, different linear densities, different twist directions of the core were prepared. The results show that the tensile strengths of the hollow yarns decrease first, then increase and decrease again, at last the tensile strength trends to reach a steady state with the soluble PVA core extraction proceeding. And when the sheath linear densities of the core spun yams are constant, their twist and twist direction are same as that of the core it will be easier to remove the core of the yam with a higher core size. When the linear densities of the sheath and the core are all constant, the twists of them are same, it will be easier to remove the core of the yam with a different twist direction of core to the sheath.展开更多
The main objective of this work was to develop a kinetic model to describe the variation of the surface tension in an air-water interface due to the adsorption of proteins from different origins and to identify quanti...The main objective of this work was to develop a kinetic model to describe the variation of the surface tension in an air-water interface due to the adsorption of proteins from different origins and to identify quantitatively the relevant parameters, it was considered that the processes of adsorption, unfolding and reordering of the protein molecule in the interface occur simultaneously. The model used in the present work to calculate the surface tension postulates the existence of two simultaneous processes, adsorption and protein rearrangement represented with an equation of first order with two exponential components. The relevant parameter of the equation are ka and kr-the rate constants of the two first order kinetic phases that correspond to both conformational states of the protein, adsorption and rearrangement during the process of variation of the surface tension, and the amplitude parameters Aa and Ar. The results suggest that the kinetic model for the variation of the surface tension of protein solutions proposed in this work, with two simultaneous first order processes, is more appropriate than previous models to describe such variation.展开更多
The surface tension of carbonated monoethanolamine aqueous solutions from 293.15 to 323.15 K was measured by using an automatic surface tension-meter.A model applicable for the surface tension of MEA-CO2-water mixture...The surface tension of carbonated monoethanolamine aqueous solutions from 293.15 to 323.15 K was measured by using an automatic surface tension-meter.A model applicable for the surface tension of MEA-CO2-water mixtures was proposed and the calculated results agreed well with the experiments.The influences of temperature,MEA concentration and CO2 loading were demonstrated on the basis of experiments and calculations.展开更多
文摘Transport of nonreactive solutes in soils is principally controlled by soil properties, such as particle-size distribution and pore geometry. Surface tension of soil water yields capillary forces that bind the water in the soil pores. Changes in soil water surface tension by contaminants may affect flow of soil water due to decreased capillary forces, caused by lowered soil water surface tension. This study aimed at assessing solute transport in sand columns as affected by effluent surface tension. Miscible displacement (MD) tests were conducted on sand columns repacked with sands sieved from 2.0, 1.0, 0.5 and 0.25 mm screens. The MD tests were conducted with 0.05 M bromide solutions prepared using water with surface tension adjusted to 72.8, 64, 53.5 and 42 dyne/cm2. Obtained breakthrough curves were modeled with the convection-dispersion equation (CDE) model. Coefficient of hydrodynamic dispersion and pore-water velocity responded inconsistently across decreased particle-sizes and water surface tensions and this was attributed to non-uniform effect of lowered effluent surface tension on solute transport in different pore-size distribution.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51874372).
文摘The properties of low-modulus(m≤1)sodium silicate and pre-desilication solutions in alkali systems were studied by measuring their electrical conductivity,viscosity,and surface tension.The results show that the property of high concentration pre-desilication solution is similar to that of sodium silicate solution.The electrical conductivity of sodium silicate solution increases with increasing the temperature and silica concentration but decreases with increasing the modulus.Further,the viscosity of the solution increases with increasing the silica concentration and linearly decreases with increasing the temperature,whereas its surface tension gradually decreases with increasing silica concentration and temperature,indicating that the sodium silicate solution is an oligomer with strong surface activity.At room temperature,the electrical conductivity and surface tension of sodium silicate solution are higher than those of pre-desilication solution,whereas its viscosity is smaller than that of pre-desilication solution.A turning point exists at a silica concentration of 44.7 g/L.When the silica concentration is less than 44.7 g/L,the ionic structure of the solution is dominated by monomeric silicate ions.In contrast,when the silica concentration changes from 44.7 to 50 g/L,the migration number of silicate anions significantly decreases.
基金Supported by the Foundation of Tianjin Science and Technology Commission (No.043104711)
文摘In this paper cotton hollow yarns were obtained from the core spun yams which were produced on a little modified conventional experiment ring frame with water soluble staple PVA yam as the core. For comparison, yams with same linear densities, same twists of the sheath, different linear densities, different twist directions of the core were prepared. The results show that the tensile strengths of the hollow yarns decrease first, then increase and decrease again, at last the tensile strength trends to reach a steady state with the soluble PVA core extraction proceeding. And when the sheath linear densities of the core spun yams are constant, their twist and twist direction are same as that of the core it will be easier to remove the core of the yam with a higher core size. When the linear densities of the sheath and the core are all constant, the twists of them are same, it will be easier to remove the core of the yam with a different twist direction of core to the sheath.
文摘The main objective of this work was to develop a kinetic model to describe the variation of the surface tension in an air-water interface due to the adsorption of proteins from different origins and to identify quantitatively the relevant parameters, it was considered that the processes of adsorption, unfolding and reordering of the protein molecule in the interface occur simultaneously. The model used in the present work to calculate the surface tension postulates the existence of two simultaneous processes, adsorption and protein rearrangement represented with an equation of first order with two exponential components. The relevant parameter of the equation are ka and kr-the rate constants of the two first order kinetic phases that correspond to both conformational states of the protein, adsorption and rearrangement during the process of variation of the surface tension, and the amplitude parameters Aa and Ar. The results suggest that the kinetic model for the variation of the surface tension of protein solutions proposed in this work, with two simultaneous first order processes, is more appropriate than previous models to describe such variation.
基金support from the National Natural Science Foundation of China (21076070)the Natural Science Funds for Distinguished Young Scholar of Hebei Province (B2012502076)+1 种基金Fundamental Research Funds for the Central Universities (11ZG10)the 111 project (B12034)
文摘The surface tension of carbonated monoethanolamine aqueous solutions from 293.15 to 323.15 K was measured by using an automatic surface tension-meter.A model applicable for the surface tension of MEA-CO2-water mixtures was proposed and the calculated results agreed well with the experiments.The influences of temperature,MEA concentration and CO2 loading were demonstrated on the basis of experiments and calculations.