期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种基于层选择的弥散张量优化算法
1
作者 刘薇 周振宇 +6 位作者 刘小征 严序 杨光 王遵亮 周永迪 Peterson Bradley S 徐冬溶 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第1期30-34,共5页
为了从带伪影的弥散加权数据中重建更准确的张量,提出了一种基于层选择的张量优化算法.首先对弥散加权图像中常见的3种伪影(波状、层间运动和对比度伪影)进行定性分析,分别提取3种对应的特征(小波标记、相似度和相关性)来识别这些伪影,... 为了从带伪影的弥散加权数据中重建更准确的张量,提出了一种基于层选择的张量优化算法.首先对弥散加权图像中常见的3种伪影(波状、层间运动和对比度伪影)进行定性分析,分别提取3种对应的特征(小波标记、相似度和相关性)来识别这些伪影,从而区分出正常图层和伪影图层.然后,利用正常图层数据进行张量重建.模拟实验结果验证了这3种特征对弥散加权图像中相关伪影判断的有效性,且对波状伪影和层间运动伪影的判断率均大于90%.真实数据实验结果表明,与类似算法相比,所提算法可以更好地改善部分各向异性伪彩图中的偏色现象,在白质结构分析中提供了更准确的方向信息. 展开更多
关键词 弥散加权成像 弥散张量成像 张量优化 小波标记 互信息 灰度共生矩阵
下载PDF
Double Transformed Tubal Nuclear Norm Minimization for Tensor Completion
2
作者 TIAN Jialue ZHU Yulian LIU Jiahui 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期166-174,共9页
Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values ... Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values of large tensors.In this paper,we propose a double transformed tubal nuclear norm(DTTNN)to replace the rank norm penalty in low rank tensor completion(LRTC)tasks.DTTNN turns the original non-convex penalty of a large tensor into two convex penalties of much smaller tensors,and it is shown to be an equivalent transformation.Therefore,DTTNN could take advantage of non-convex envelopes while saving time.Experimental results on color image and video inpainting tasks verify the effectiveness of DTTNN compared with state-of-the-art methods. 展开更多
关键词 double transformed tubal nuclear norm low tubal-rank non-convex optimization tensor factorization tensor completion
下载PDF
Designing Bézier surfaces minimizing the L^2-norm of the Gaussian curvature
3
作者 MO Guo-liang WU Ming-hua 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第1期142-148,共7页
In freeform surface modelling, developable surfaces have much application value. But, in 3D space, there is not always a regular developable surface which interpolates the given boundary of an arbitrary piecewise smoo... In freeform surface modelling, developable surfaces have much application value. But, in 3D space, there is not always a regular developable surface which interpolates the given boundary of an arbitrary piecewise smooth closed curve. In this paper, tensor product Bézier surfaces interpolating the closed curves are determined and the resulting surface is a minimum of the functional defined by the L2-integral norm of the Gaussian curvature. The Gaussian curvature of the surfaces is minimized by the method of solving nonlinear optimization problems. An improved approach trust-region form method is proposed. A simple application example is also given. 展开更多
关键词 ensor product polynomial surfaces Gaussian curvature L^2-integral norm Texture mapping Nonlinear optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部