A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. Th...A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. The data set contained non-polar and polar liquids, and saturated and unsaturated compounds. The regression analysis shows that excellent result is obtained with multiple linear regression. The predictive power of the proposed model was discussed using the leave-one-out (LOO) cross-validated (CV) method. The correlation coefficient (R) and the leave-one-out cross-validation correlation coefficient (Rcv) of multiple linear regression model are 0.991 4 and 0.991 3, respectively. The new model gives the average absolute relative deviation of 1.81% for 92 substances. The result demonstrates that novel topological indices based on the equilibrium electro-negativity of atom and the relative bond length are useful model parameters for QSPR analysis of compounds.展开更多
This paper addresses the problem of joint angle and delay estimation(JADE) in a multipath communication scenario. A low-complexity multi-way compressive sensing(MCS) estimation algorithm is proposed. The received data...This paper addresses the problem of joint angle and delay estimation(JADE) in a multipath communication scenario. A low-complexity multi-way compressive sensing(MCS) estimation algorithm is proposed. The received data are firstly stacked up to a trilinear tensor model. To reduce the computational complexity,three random compression matrices are individually used to reduce each tensor to a much smaller one. JADE then is linked to a low-dimensional trilinear model. Our algorithm has an estimation performance very close to that of the parallel factor analysis(PARAFAC) algorithm and automatic pairing of the two parameter sets. Compared with other methods, such as multiple signal classification(MUSIC), the estimation of signal parameters via rotational invariance techniques(ESPRIT), the MCS algorithm requires neither eigenvalue decomposition of the received signal covariance matrix nor spectral peak searching. It also does not require the channel fading information, which means the proposed algorithm is blind and robust, therefore it has a higher working efficiency.Simulation results indicate the proposed algorithm have a bright future in wireless communications.展开更多
基金Projects(20775010,21075011) supported by the National Natural Science Foundation of ChinaProject(2008AA05Z405) supported by the National High Technology Research and Development Program of China+2 种基金Project(09JJ3016) supported by Hunan Provincial Natural Science Foundation,ChinaProject(09C066) supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2010CL01) supported by the Foundation of Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,China
文摘A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. The data set contained non-polar and polar liquids, and saturated and unsaturated compounds. The regression analysis shows that excellent result is obtained with multiple linear regression. The predictive power of the proposed model was discussed using the leave-one-out (LOO) cross-validated (CV) method. The correlation coefficient (R) and the leave-one-out cross-validation correlation coefficient (Rcv) of multiple linear regression model are 0.991 4 and 0.991 3, respectively. The new model gives the average absolute relative deviation of 1.81% for 92 substances. The result demonstrates that novel topological indices based on the equilibrium electro-negativity of atom and the relative bond length are useful model parameters for QSPR analysis of compounds.
基金supported by the National Natural Science Foundation of China(6107116361271327+4 种基金61471191)the Fundamental Research Funds for the Central Universities(NP2015504)the Jiangsu Innovation Program for Graduate Education(KYLX 0277)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PADA)the Funding for Outstanding Doctoral Dissertation in NUAA(BCXJ14-08)
文摘This paper addresses the problem of joint angle and delay estimation(JADE) in a multipath communication scenario. A low-complexity multi-way compressive sensing(MCS) estimation algorithm is proposed. The received data are firstly stacked up to a trilinear tensor model. To reduce the computational complexity,three random compression matrices are individually used to reduce each tensor to a much smaller one. JADE then is linked to a low-dimensional trilinear model. Our algorithm has an estimation performance very close to that of the parallel factor analysis(PARAFAC) algorithm and automatic pairing of the two parameter sets. Compared with other methods, such as multiple signal classification(MUSIC), the estimation of signal parameters via rotational invariance techniques(ESPRIT), the MCS algorithm requires neither eigenvalue decomposition of the received signal covariance matrix nor spectral peak searching. It also does not require the channel fading information, which means the proposed algorithm is blind and robust, therefore it has a higher working efficiency.Simulation results indicate the proposed algorithm have a bright future in wireless communications.