-
题名张量核范数回归的目标跟踪
被引量:1
- 1
-
-
作者
亚森江·木沙
木合塔尔·克力木
赵春霞
-
机构
新疆大学机械工程学院
南京理工大学计算机科学与工程学院
-
出处
《中国图象图形学报》
CSCD
北大核心
2016年第6期781-795,共15页
-
基金
国家自然科学基金项目(51365052,61272220)~~
-
文摘
目的视觉目标跟踪中,不同时刻的目标状态是利用在线学习的模板数据线性组合近似表示。由于跟踪中目标受到自身或场景中各种复杂干扰因素的影响,跟踪器的建模能力很大程度地依赖模板数据的概括性及其误差的估计精度。很多现有算法以向量形式表示样本信号,而改变其原始数据结构,使得样本数据各元素之间原有的自然关系受到严重破坏;此外,这种数据表述机制会提高数据的维度,而带来一定的计算复杂度和资源浪费。本文以多线性分析的角度更进一步深入研究视频跟踪中的数据表示及其建模机制,为其提供更加紧凑有效的解决方法。方法本文跟踪框架中,候选样本及其重构信号以张量形式表示,从而保证其数据的原始结构。跟踪器输出候选样本外观状态时,以张量良好的多线性特性来组织跟踪系统的建模任务,利用张量核范数及L_1范数正则化其目标函数的相关成分,在多任务状态学习假设下充分挖掘各候选样本外观表示任务的独立性及相互依赖关系。结果用结构化张量表示的数据原型及其多任务观测模型能够较为有效地解决跟踪系统的数据表示及计算复杂度难题。同时,为候选样本外观模型的多任务联合学习提供更加简便有效的解决途径。这样,当跟踪器遇到破坏性较强的噪声干扰时,其张量核范数约束的误差估计机制在多任务联合学习框架下更加充分挖掘目标全面信息,使其更好地适应内在或外在因素所引起的视觉信息变化。在一些公认测试视频上的实验结果表明,本文算法在候选样本外观模型表示方面表现出更为鲁棒的性能。因而和一些优秀的同类算法相比,本文算法在各测试序列中跟踪到的目标图像块平均中心位置误差和平均重叠率分别达到4.2和0.82,体现出更好的跟踪精度。结论大量实验验证本文算法的张量核范数回归模型及其误差估计机制能够构造出目标每一时刻状态更接近的最佳样本信号,在多任务学习框架下严格探测每一个候选样本的真实状态信息,从而较好地解决模型退化和跟踪漂移问题。
-
关键词
多线性分析
张量核范数回归
模型表示
误差估计
目标跟踪
-
Keywords
muhilinear analysis
tensor nuclear-norm regression
model representation
error estimation
object tracking
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-