期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于张量特征的小样本图像快速分类方法
1
作者 张艳莎 冯夫健 +4 位作者 王杰 潘凤 谭棉 张再军 王林 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第6期1059-1069,共11页
解决小样本图像分类问题最直接的方式是进行数据增强,但目前适用于小样本图像分类的数据增强方法大都存在模型复杂、推理时间长的问题.提出一个张量特征生成器,通过生成新的张量特征在特征空间对小样本图像进行数据增强.基于张量特征生... 解决小样本图像分类问题最直接的方式是进行数据增强,但目前适用于小样本图像分类的数据增强方法大都存在模型复杂、推理时间长的问题.提出一个张量特征生成器,通过生成新的张量特征在特征空间对小样本图像进行数据增强.基于张量特征生成器,提出一个适用于小样本图像的快速分类方法(Tensor Feature-based Faster Classification Network,TFFCN),该方法网络结构简单,利用残差网络提取图像的张量特征,通过张量特征生成器对小样本图像进行数据增强,从而训练得到一个满意的分类器对查询集图像进行分类,解决了模型推理时间长的问题.为了验证提出模型的有效性,选用公开数据集miniImageNet,CUB以及CIFAR-FS,对分类性能和推理时间进行对比实验.实验结果表明,TFFCN的分类性能优于目前流行的数据增强方法,并且,和改进前的模型相比能有效减少模型的推理时间,采用ResNet18和ResNet12为主干特征提取网络时,随着生成的张量特征数量的增加,最高可减少49%和24%的推理时间,能更快速地完成小样本图像分类任务. 展开更多
关键词 小样本图像分类 数据增强 张量特征生成器 张量特征 推理时间
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部