A cable net structure is selected to support its reflecting triangular aluminum panels of FAST(five-hundred-meter aperture spherical radio telescope).To ensure the security and stability of the supporting structure,ca...A cable net structure is selected to support its reflecting triangular aluminum panels of FAST(five-hundred-meter aperture spherical radio telescope).To ensure the security and stability of the supporting structure,cable force of typical cables must be monitored on line.Considering the stringent requirements in installation,accuracy,long-term stability and EMI(Electromagnetic interference),most of the commonly used cable force measurement methods or sensors are not suitable for the cable force monitoring of the supporting cable-net of FAST.A method is presents to accomplish the cable force monitoring,which uses a vibrating wire strain gauge to monitor the strain of linear strain area at the anchor head.Experiments have been carried out to verify the feasibility.The method has a series of advantages,such as high reliability,high accuracy,good dynamic performance and durability,easiness of maintenance,technical maturity in industry and EMI shielding.Theoretical analysis shows that there is a linear relationship between the cable body force and anchor head surface strain,and experimental results proves a good linear relationship with excellent repeatability between the cable body force and anchor head surface strain measured by the vibrating wire strain gauge,with a linear fit better than 0.98.Mean square error in practical measuring is 2.5t.The relative error is better than 4%within the scope of the cable force in FAST operation which meets practical demand in FAST engineering.展开更多
A high accuracy experimental system has been established for unsteady open-channel flow.Then 40 experiments were conducted to study the propagating characteristics of unsteady open-channel flow.From the experimental d...A high accuracy experimental system has been established for unsteady open-channel flow.Then 40 experiments were conducted to study the propagating characteristics of unsteady open-channel flow.From the experimental data,the variation law of propagating velocity,wave deformation rate,flow depth of wave peak and bottom,and other parameters were obtained.The experimental results show the followings.1) The propagating velocity of unsteady open-channel flows can be expressed by the sum of flow velocity and micro-amplitude wave velocity at wave peak.2) The waveform of an unsteady flow would deform when it propagates,with the rising stage becoming longer and the falling stage shorter;the deformation rate is a function of distance,period and relative amplitude of discharge.3) The flow depths of wave peak and bottom have a close relationship with the period of the unsteady flow.When the period is short,water depths of wave peak and bottom are both close to those of the average discharge in the condition of uniform flow.For a long period unsteady flow,the water depth of wave peak is close to that of the maximal discharge in the condition of uniform flow,while at the flow wave bottom,it is close to the depth of the minimum discharge in an uniform flow.4) Propagating characteristic of discharge is analogous to that of flow depth for unsteady flow.展开更多
基金Supported by the National Natural Science Foundation of China(No.11173035,11273036)
文摘A cable net structure is selected to support its reflecting triangular aluminum panels of FAST(five-hundred-meter aperture spherical radio telescope).To ensure the security and stability of the supporting structure,cable force of typical cables must be monitored on line.Considering the stringent requirements in installation,accuracy,long-term stability and EMI(Electromagnetic interference),most of the commonly used cable force measurement methods or sensors are not suitable for the cable force monitoring of the supporting cable-net of FAST.A method is presents to accomplish the cable force monitoring,which uses a vibrating wire strain gauge to monitor the strain of linear strain area at the anchor head.Experiments have been carried out to verify the feasibility.The method has a series of advantages,such as high reliability,high accuracy,good dynamic performance and durability,easiness of maintenance,technical maturity in industry and EMI shielding.Theoretical analysis shows that there is a linear relationship between the cable body force and anchor head surface strain,and experimental results proves a good linear relationship with excellent repeatability between the cable body force and anchor head surface strain measured by the vibrating wire strain gauge,with a linear fit better than 0.98.Mean square error in practical measuring is 2.5t.The relative error is better than 4%within the scope of the cable force in FAST operation which meets practical demand in FAST engineering.
基金supported by the National Key Technology R & D Programof China (Grant No. 2011BAB09B01)the Chongqing Natural Science Foundation of China (Grant No. cstc2011jjA1167)
文摘A high accuracy experimental system has been established for unsteady open-channel flow.Then 40 experiments were conducted to study the propagating characteristics of unsteady open-channel flow.From the experimental data,the variation law of propagating velocity,wave deformation rate,flow depth of wave peak and bottom,and other parameters were obtained.The experimental results show the followings.1) The propagating velocity of unsteady open-channel flows can be expressed by the sum of flow velocity and micro-amplitude wave velocity at wave peak.2) The waveform of an unsteady flow would deform when it propagates,with the rising stage becoming longer and the falling stage shorter;the deformation rate is a function of distance,period and relative amplitude of discharge.3) The flow depths of wave peak and bottom have a close relationship with the period of the unsteady flow.When the period is short,water depths of wave peak and bottom are both close to those of the average discharge in the condition of uniform flow.For a long period unsteady flow,the water depth of wave peak is close to that of the maximal discharge in the condition of uniform flow,while at the flow wave bottom,it is close to the depth of the minimum discharge in an uniform flow.4) Propagating characteristic of discharge is analogous to that of flow depth for unsteady flow.