The numerical analysis on a shaft with rub-impact condition is done by using the finite difference method. The bending modes and the moment yaring along the shaft are described,to reveal the in crease pattern of sect...The numerical analysis on a shaft with rub-impact condition is done by using the finite difference method. The bending modes and the moment yaring along the shaft are described,to reveal the in crease pattern of sectional stress of the shaft. The result obtained in this paper can be used in explaining the phenomena of many breaking sections appeared in destructive failures of actual rotating machinery.展开更多
A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order...A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order effects of element deformations, replaces the conventional incremental secant stiffness matrix. Two deformation stiffness matrices due to the variation of axial force and bending moments are included in the tangent stiffness. They are functions of element deformations and incorporate the coupling among axial, lateral and torsional deformations. A correction matrix is added to the tangent stiffness matrix to make displacement derivatives equivalent to the commutative rotational degrees of freedom. Numerical examples show that the proposed dement is accurate and efficient in predicting the nonlinear behavior, such as axial-torsional and flexural-torsional buckling, of space frames even when fewer elements are used to model a member.展开更多
The motion track of belt spindle is important for the radial error of belt spindle. An analytical modeling method for the motion track of belt spindle under the combined effects of bending moment-torque-thermal deform...The motion track of belt spindle is important for the radial error of belt spindle. An analytical modeling method for the motion track of belt spindle under the combined effects of bending moment-torque-thermal deformation is proposed in this paper. Three running phases of belt spindle have been analyzed and modeled: the start-up phase with leaping change due to the change in force and bending moment, the accelerating phase with axis deflection, and the constant speed phase with axis regression because of the combined effects of bending moment-torque-thermal deformation. The simulation and test were completed on the belt spindle of SKVM850 machine tool, which illustrates the variation law of the radial error of belt spindle during the whole running phases.展开更多
While modem prestressed techniques have improved the torsion properties of high-strength concrete (HSC) composite beams with prestressed steel (PS) boxes, no research has been reported in either the national or in...While modem prestressed techniques have improved the torsion properties of high-strength concrete (HSC) composite beams with prestressed steel (PS) boxes, no research has been reported in either the national or international literature on the an- ti-torque and composite torque properties of this type of beam. With the aim of understanding the torque properties of these beams, this paper presents results of ten comprehensive tests; three of these were based on stirrup spacings and prestressing levels as the main parameters, while the other seven were based on torsional rates. The torsion tests were conducted on the re- sults which established several key parameters, including curves of constant torsion, strain curves of steel torsion, strain distri- bution of steel beams and concrete, curves of bending-moment and mid-span deflection, as well as cross strain distribution.The prestressing impact-factor method was adopted to deduce semiempirical equations for cracking torque in such composite beams. Furthermore, this involves the use of the equation of ultimate torque based on tress-model-theory of the distortion an- gle, the calculated results show good agreement with the measured values. In summary, this paper offers theoretical analysis for future applications of HSC composite beams with PS boxes, and provides both validation of the methods employed and a reference point for on-going research on composite beams and related anti-torque studies.展开更多
文摘The numerical analysis on a shaft with rub-impact condition is done by using the finite difference method. The bending modes and the moment yaring along the shaft are described,to reveal the in crease pattern of sectional stress of the shaft. The result obtained in this paper can be used in explaining the phenomena of many breaking sections appeared in destructive failures of actual rotating machinery.
文摘A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order effects of element deformations, replaces the conventional incremental secant stiffness matrix. Two deformation stiffness matrices due to the variation of axial force and bending moments are included in the tangent stiffness. They are functions of element deformations and incorporate the coupling among axial, lateral and torsional deformations. A correction matrix is added to the tangent stiffness matrix to make displacement derivatives equivalent to the commutative rotational degrees of freedom. Numerical examples show that the proposed dement is accurate and efficient in predicting the nonlinear behavior, such as axial-torsional and flexural-torsional buckling, of space frames even when fewer elements are used to model a member.
基金Supported by the State S&T Projects for Upmarket NC Machine and Fundamental Manufacturing Equipments of China(No.2012ZX04012-031)
文摘The motion track of belt spindle is important for the radial error of belt spindle. An analytical modeling method for the motion track of belt spindle under the combined effects of bending moment-torque-thermal deformation is proposed in this paper. Three running phases of belt spindle have been analyzed and modeled: the start-up phase with leaping change due to the change in force and bending moment, the accelerating phase with axis deflection, and the constant speed phase with axis regression because of the combined effects of bending moment-torque-thermal deformation. The simulation and test were completed on the belt spindle of SKVM850 machine tool, which illustrates the variation law of the radial error of belt spindle during the whole running phases.
基金supported by the National Natural Science Foundation of China (Grant No. 50879048)"948" Project of the Ministry of Water Resources of China (Grant No. 201127)
文摘While modem prestressed techniques have improved the torsion properties of high-strength concrete (HSC) composite beams with prestressed steel (PS) boxes, no research has been reported in either the national or international literature on the an- ti-torque and composite torque properties of this type of beam. With the aim of understanding the torque properties of these beams, this paper presents results of ten comprehensive tests; three of these were based on stirrup spacings and prestressing levels as the main parameters, while the other seven were based on torsional rates. The torsion tests were conducted on the re- sults which established several key parameters, including curves of constant torsion, strain curves of steel torsion, strain distri- bution of steel beams and concrete, curves of bending-moment and mid-span deflection, as well as cross strain distribution.The prestressing impact-factor method was adopted to deduce semiempirical equations for cracking torque in such composite beams. Furthermore, this involves the use of the equation of ultimate torque based on tress-model-theory of the distortion an- gle, the calculated results show good agreement with the measured values. In summary, this paper offers theoretical analysis for future applications of HSC composite beams with PS boxes, and provides both validation of the methods employed and a reference point for on-going research on composite beams and related anti-torque studies.