为探索更加轻质高效的吸能结构,满足碰撞安全性能设计需求,针对一种新颖的聚合物泡沫填充双管结构的弯曲吸能性能进行了参数研究及优化设计。优化设计考虑了3种不同的弯曲工况,以结构的外管厚度、内管外径及内管厚度为优化设计变量,以...为探索更加轻质高效的吸能结构,满足碰撞安全性能设计需求,针对一种新颖的聚合物泡沫填充双管结构的弯曲吸能性能进行了参数研究及优化设计。优化设计考虑了3种不同的弯曲工况,以结构的外管厚度、内管外径及内管厚度为优化设计变量,以提升结构的比吸能(Specific Energy Absorption,SEA)为目标,并限制弯曲过程中的峰值力(Peak Crushing Force,PCF)。优化采用了一种综合有限元仿真分析、实验设计、代理模型技术、优化算法的系统方法。优化结果表明:相比初始设计,聚合物泡沫填充双管结构最优设计在3种弯曲工况下的吸能性能均有提升。展开更多
The development of a high-performing pseudocapacitor requires a comprehensive understanding of electrode materials from the aspects of electron transfer and electrolyte ion adsorption and diffusion.Herein,these factor...The development of a high-performing pseudocapacitor requires a comprehensive understanding of electrode materials from the aspects of electron transfer and electrolyte ion adsorption and diffusion.Herein,these factors are considered over the prototype TiO_(2),and a high pseudocapacitance is achieved via the introduction of various defects,i.e.,oxygen defect(V_(O))and co-doped defect(V_(O)+N_(O)).The study is based on joint explorations of first-principle calculations and the transfer matrix method.Relative to pristine TiO_(2)(300 F g^(-1)),defective TiO_(2) produces pseudocapacitance as high as 1700 F g^(-1).Moreover,defects induce small barriers for electron transmission caused by surface band bending.The climbing image nudged elastic band diffusion of H ions displays a much higher barrier in TiO_(2)-V_(O) than in TiO_(2)-V_(O)+N_(O).Such a result indicates easy H diffusion in the co-doped system.This work provides insights into the adsorption and diffusion of electrolyte ions and the influence of defects on electron transfer.The results are also significant for the design and optimization of electrode materials for the next generation of supercapacitors.展开更多
文摘为探索更加轻质高效的吸能结构,满足碰撞安全性能设计需求,针对一种新颖的聚合物泡沫填充双管结构的弯曲吸能性能进行了参数研究及优化设计。优化设计考虑了3种不同的弯曲工况,以结构的外管厚度、内管外径及内管厚度为优化设计变量,以提升结构的比吸能(Specific Energy Absorption,SEA)为目标,并限制弯曲过程中的峰值力(Peak Crushing Force,PCF)。优化采用了一种综合有限元仿真分析、实验设计、代理模型技术、优化算法的系统方法。优化结果表明:相比初始设计,聚合物泡沫填充双管结构最优设计在3种弯曲工况下的吸能性能均有提升。
基金financially supported by the National Key Research and Development Program(2016YFB0901600)Tianjin City Distinguished Young Scholar Fund(17JCJQJC45100)+3 种基金the National Natural Science Foundation of China(21975136 and 21573117)Tianjin Key Research and Development Program(18ZXSZSF00060)the Open Funds from the National Engineering Lab for Mobile Source Emission Control Technology(NELMS2018A01)the project of Shenzhen Science,Technology and Innovation Committee(JCYJ20190808151603654)。
文摘The development of a high-performing pseudocapacitor requires a comprehensive understanding of electrode materials from the aspects of electron transfer and electrolyte ion adsorption and diffusion.Herein,these factors are considered over the prototype TiO_(2),and a high pseudocapacitance is achieved via the introduction of various defects,i.e.,oxygen defect(V_(O))and co-doped defect(V_(O)+N_(O)).The study is based on joint explorations of first-principle calculations and the transfer matrix method.Relative to pristine TiO_(2)(300 F g^(-1)),defective TiO_(2) produces pseudocapacitance as high as 1700 F g^(-1).Moreover,defects induce small barriers for electron transmission caused by surface band bending.The climbing image nudged elastic band diffusion of H ions displays a much higher barrier in TiO_(2)-V_(O) than in TiO_(2)-V_(O)+N_(O).Such a result indicates easy H diffusion in the co-doped system.This work provides insights into the adsorption and diffusion of electrolyte ions and the influence of defects on electron transfer.The results are also significant for the design and optimization of electrode materials for the next generation of supercapacitors.