Bulge is a defect that causes geometrical inaccuracy and premature failure in the innovative incremental sheet forming (ISF) process. This study has two-fold objectives:(1) knowing the bulging behavior of a Cu clad tr...Bulge is a defect that causes geometrical inaccuracy and premature failure in the innovative incremental sheet forming (ISF) process. This study has two-fold objectives:(1) knowing the bulging behavior of a Cu clad tri-layered steel sheet as a function of forming conditions, and (2) analyzing the bending effect on bulging in an attempt to identify the associated mechanism. A series of ISF tests and bending analysis are performed to realize these objectives. From the cause-effect analysis, it is found that bulge formation in the layered sheet is sensitive to forming conditions in a way that bulging can be minimized utilizing annealed material and performing ISF with larger tool diameter and step size. The bending under tension analysis reveals that the formation of bulge is an outgrowth of bending moment that the forming tool applies on the sheet during ISF. Furthermore, the magnitude of bending moment depending upon the forming conditions varies from 0.046 to 10.24 N·m/m and causes a corresponding change in the mean bulge height from 0.07 to 0.91 mm. The bending moment governs bulging in layered sheet through a linear law. These findings lead to a conclusion that the bulge defect can be overcome by controlling the bending moment and the formula proposed can be helpful in this regards.展开更多
For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-p...For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.展开更多
The semi? analytic perturbation weighted residuals method was used to solve the nonlinear bending problem of shallow shells, and the fifth order B spline was taken as trial function to seek an efficient method for n...The semi? analytic perturbation weighted residuals method was used to solve the nonlinear bending problem of shallow shells, and the fifth order B spline was taken as trial function to seek an efficient method for nonlinear bending problem of shallow shells. The results from the present method are in good agreement with those derived from other methods. The present method is of higher accuracy, lower computing time and wider adaptability. In addition, the design of computer program is simple and it is easy to be programmed.展开更多
Based on the theories of three-dimensional elasticity and piezoelectricity, and by assuming appropriate boundary functions, we established a state equation of piezoelectric cylindrical shells. By using the transfer ma...Based on the theories of three-dimensional elasticity and piezoelectricity, and by assuming appropriate boundary functions, we established a state equation of piezoelectric cylindrical shells. By using the transfer matrix method, we presented an analytical solution that satisfies all the arbitrary boundary conditions at boundary edges, as well as on upper and bottom surfaces. Our solution takes into account all the independent elastic and piezoelectric constants for a piezoelectric orthotropy, and satisfies continuity conditions between plies of the laminates. The principle of the present method and corresponding results can be widely used in many engineering fields and be applied to assess the effectiveness of various approximate and numerical models.展开更多
Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well...Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well as reliability in complex environmental conditions. In this study,the UHF RFID tags with perfect integration with textiles are assembled with screen-printed antenna on woven water-mark nylon fabric and Alien UHF integrated circuit( IC), and their reading performance under various washing and bending conditions is evaluated by an RFID reader. The results show that the tags after fifty bending( both arch and sink) cycles of screen-printed antenna still have reading distance more than 5.5 m,and an average reading distance is over 4.0 m after five washing cycles. The experimental results demonstrate that the tag antenna on the water-mark fabric can be manufactured by the screen-printing technology,and a coating process on this fabric facilitates the reading performance and the resistance against complex mechanical impact.展开更多
A new version of the scalar transverse electric(TE) wave equation in the bent waveguide is introduced. Then, TE polarized field in curved single-mode waveguides is analyzed by using the finite-difference beam propagat...A new version of the scalar transverse electric(TE) wave equation in the bent waveguide is introduced. Then, TE polarized field in curved single-mode waveguides is analyzed by using the finite-difference beam propagation method(FD-BPM). The bending loss in bent waveguides is gotten for the optical fields obtained from BPM and comparisons are made among losses of the waveguides with various curvature radiuses, refractive index differences and cross sections. Based on the results, the design of spiral bent waveguide configuration is proposed as follows: refractive index difference being of 0.007, both width and thickness of waveguides being of 6 μm, the curvature radius in the spiral centre being of 4 mm, and the bending loss coefficient of the designed spiral bent waveguide being of 0.302 3 dB/cm.展开更多
A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpola...A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples.展开更多
In this paper,the effects of forward speed on the lateral vibration of a slender structure in an infinite fluid are considered.By equating the bending stress of the structure with the hydrodynamic force acting on it,t...In this paper,the effects of forward speed on the lateral vibration of a slender structure in an infinite fluid are considered.By equating the bending stress of the structure with the hydrodynamic force acting on it,the equation which governs the fluid-structure interaction of a slender structure both vibrating and moving in water is obtained.Numerical results show that the influence of forward speed on the vibration of a slender structure in water is significant.It behaves like damping,reducing both natural frequencies and responses significantly.展开更多
The drying characteristic was studied for plantation wood of Chinese fir and poplar, which are typical plantation wood of southern and northern part of China, respectively. Through 100-degree-method the drying charact...The drying characteristic was studied for plantation wood of Chinese fir and poplar, which are typical plantation wood of southern and northern part of China, respectively. Through 100-degree-method the drying characteristic and basic drying condition were gotten, then drying schedule was developed for practical drying, the results showed that the drying schedule is suitable for Chinese fir and poplar plantation lumber, but shrinkage is large. The recommendation was made that enough dead weight is needed to decrease shrinkage in drying process. The drying quality of the two species of lumber is good in conventional drying method.展开更多
In this paper, non-self-adjoint Sturm-Liuville operators in Weyl's limit-circle case are studied. We first determine all the non-self-adjoint boundary conditions yielding dissipative operators for each allowed Sturm-...In this paper, non-self-adjoint Sturm-Liuville operators in Weyl's limit-circle case are studied. We first determine all the non-self-adjoint boundary conditions yielding dissipative operators for each allowed Sturm-Liouville differential expression. Then, using the characteristic determinant, we prove the completeness of the system of eigenfunctions and associated functions for these dissipative operators.展开更多
The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates The integrals involved in the variational description of a thin plate are evaluated by a...The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates The integrals involved in the variational description of a thin plate are evaluated by an efficient numerical scheme and the par- tial derivatives at the integration sampling points are then approximated using differential quadrature analogs. Neither the grid pattern nor the number of nodes is fixed, being adjustable according to convergence need. The C~ continuity conditions char- acterizing the thin plate theory are discussed and the robustness of the weak form quadrature element for thin plates against shape distortion is examined. Examples are presented and comparisons with analytical solutions and the results of the finite element method are made to demonstrate the convergence and computational efficiency of the weak form quadrature element method. It is shown that the present formulation is applicable to thin plates with varying thickness as well as uniform plates.展开更多
The quantitative photoacoustic investigation of different TiO2 thin films on Si substrates is presented using the elastic bending method. Photoacoustic signal amplitude and phase spectra versus modulation frequency we...The quantitative photoacoustic investigation of different TiO2 thin films on Si substrates is presented using the elastic bending method. Photoacoustic signal amplitude and phase spectra versus modulation frequency were measured and analyzed using different sample thicknesses. Within the proposed method particular attention is given to the analysis of optical, thermal, elastic and structural sample parameters. Considerable focus is devoted to the fitting procedure of experimental results using the two-layer sample theoretical model. Characteristics of previously developed photoacoustic apparatus are discussed, attempting to search the ideal experimental conditions which can provide a good signal-to-noise ratio and sensitivity.展开更多
基金the financial help and technical support that King Abdulaziz University provided for this research work
文摘Bulge is a defect that causes geometrical inaccuracy and premature failure in the innovative incremental sheet forming (ISF) process. This study has two-fold objectives:(1) knowing the bulging behavior of a Cu clad tri-layered steel sheet as a function of forming conditions, and (2) analyzing the bending effect on bulging in an attempt to identify the associated mechanism. A series of ISF tests and bending analysis are performed to realize these objectives. From the cause-effect analysis, it is found that bulge formation in the layered sheet is sensitive to forming conditions in a way that bulging can be minimized utilizing annealed material and performing ISF with larger tool diameter and step size. The bending under tension analysis reveals that the formation of bulge is an outgrowth of bending moment that the forming tool applies on the sheet during ISF. Furthermore, the magnitude of bending moment depending upon the forming conditions varies from 0.046 to 10.24 N·m/m and causes a corresponding change in the mean bulge height from 0.07 to 0.91 mm. The bending moment governs bulging in layered sheet through a linear law. These findings lead to a conclusion that the bulge defect can be overcome by controlling the bending moment and the formula proposed can be helpful in this regards.
基金Project(51164030)supported by the National Natural Science Foundation of China
文摘For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.
文摘The semi? analytic perturbation weighted residuals method was used to solve the nonlinear bending problem of shallow shells, and the fifth order B spline was taken as trial function to seek an efficient method for nonlinear bending problem of shallow shells. The results from the present method are in good agreement with those derived from other methods. The present method is of higher accuracy, lower computing time and wider adaptability. In addition, the design of computer program is simple and it is easy to be programmed.
基金Funded by the Natural Science Foundation of Anhui Province (No. 070414190)
文摘Based on the theories of three-dimensional elasticity and piezoelectricity, and by assuming appropriate boundary functions, we established a state equation of piezoelectric cylindrical shells. By using the transfer matrix method, we presented an analytical solution that satisfies all the arbitrary boundary conditions at boundary edges, as well as on upper and bottom surfaces. Our solution takes into account all the independent elastic and piezoelectric constants for a piezoelectric orthotropy, and satisfies continuity conditions between plies of the laminates. The principle of the present method and corresponding results can be widely used in many engineering fields and be applied to assess the effectiveness of various approximate and numerical models.
基金National Natural Science Foundation of China(Nos.51405079)China Postdoctoral Science Foundation of China(No.2015M570307)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Jiangsu Planned Projects for Postdoctoral Research Funds,China
文摘Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well as reliability in complex environmental conditions. In this study,the UHF RFID tags with perfect integration with textiles are assembled with screen-printed antenna on woven water-mark nylon fabric and Alien UHF integrated circuit( IC), and their reading performance under various washing and bending conditions is evaluated by an RFID reader. The results show that the tags after fifty bending( both arch and sink) cycles of screen-printed antenna still have reading distance more than 5.5 m,and an average reading distance is over 4.0 m after five washing cycles. The experimental results demonstrate that the tag antenna on the water-mark fabric can be manufactured by the screen-printing technology,and a coating process on this fabric facilitates the reading performance and the resistance against complex mechanical impact.
文摘A new version of the scalar transverse electric(TE) wave equation in the bent waveguide is introduced. Then, TE polarized field in curved single-mode waveguides is analyzed by using the finite-difference beam propagation method(FD-BPM). The bending loss in bent waveguides is gotten for the optical fields obtained from BPM and comparisons are made among losses of the waveguides with various curvature radiuses, refractive index differences and cross sections. Based on the results, the design of spiral bent waveguide configuration is proposed as follows: refractive index difference being of 0.007, both width and thickness of waveguides being of 6 μm, the curvature radius in the spiral centre being of 4 mm, and the bending loss coefficient of the designed spiral bent waveguide being of 0.302 3 dB/cm.
文摘A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples.
基金Supported by the National Natural Science Foundation of China under Grant No.50921001"973" Project under Grant No.2010CB832700
文摘In this paper,the effects of forward speed on the lateral vibration of a slender structure in an infinite fluid are considered.By equating the bending stress of the structure with the hydrodynamic force acting on it,the equation which governs the fluid-structure interaction of a slender structure both vibrating and moving in water is obtained.Numerical results show that the influence of forward speed on the vibration of a slender structure in water is significant.It behaves like damping,reducing both natural frequencies and responses significantly.
文摘The drying characteristic was studied for plantation wood of Chinese fir and poplar, which are typical plantation wood of southern and northern part of China, respectively. Through 100-degree-method the drying characteristic and basic drying condition were gotten, then drying schedule was developed for practical drying, the results showed that the drying schedule is suitable for Chinese fir and poplar plantation lumber, but shrinkage is large. The recommendation was made that enough dead weight is needed to decrease shrinkage in drying process. The drying quality of the two species of lumber is good in conventional drying method.
基金The author is partially supported by the Nature Science Foundation of Guangdong(5012285)the"Thousand,Hundred,Ten"Science Foundation of Guangdong(Q02052)the Nature Science Foundation of Education Bureau of Guangdong(Z02075)
文摘In this paper, non-self-adjoint Sturm-Liuville operators in Weyl's limit-circle case are studied. We first determine all the non-self-adjoint boundary conditions yielding dissipative operators for each allowed Sturm-Liouville differential expression. Then, using the characteristic determinant, we prove the completeness of the system of eigenfunctions and associated functions for these dissipative operators.
基金supported by the National Natural Science Foundation of China (Grant Nos.51178247 and 50778104)the National High Technology Research and Development Program of China (Grant No.2009AA04Z401)
文摘The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates The integrals involved in the variational description of a thin plate are evaluated by an efficient numerical scheme and the par- tial derivatives at the integration sampling points are then approximated using differential quadrature analogs. Neither the grid pattern nor the number of nodes is fixed, being adjustable according to convergence need. The C~ continuity conditions char- acterizing the thin plate theory are discussed and the robustness of the weak form quadrature element for thin plates against shape distortion is examined. Examples are presented and comparisons with analytical solutions and the results of the finite element method are made to demonstrate the convergence and computational efficiency of the weak form quadrature element method. It is shown that the present formulation is applicable to thin plates with varying thickness as well as uniform plates.
基金supported by the Ministry of Science and Technological Development of the Republic of Serbia(Grant No. 171016)the Slovenian Research Agency(Grant Nos. BI-RS/08-09-041 and P1-0034)
文摘The quantitative photoacoustic investigation of different TiO2 thin films on Si substrates is presented using the elastic bending method. Photoacoustic signal amplitude and phase spectra versus modulation frequency were measured and analyzed using different sample thicknesses. Within the proposed method particular attention is given to the analysis of optical, thermal, elastic and structural sample parameters. Considerable focus is devoted to the fitting procedure of experimental results using the two-layer sample theoretical model. Characteristics of previously developed photoacoustic apparatus are discussed, attempting to search the ideal experimental conditions which can provide a good signal-to-noise ratio and sensitivity.