The relation between microtubules architecture in the cytoskeletal structure inside the dendrites and soma and the emergence of neuron function and firing action potential crosses the tiny line between physics and bio...The relation between microtubules architecture in the cytoskeletal structure inside the dendrites and soma and the emergence of neuron function and firing action potential crosses the tiny line between physics and biology. As decoherence is a fundamental mechanism in some biological process such as photosynthesis and others examples, the gravitational quantum approach may contribute to elucidate if neuron function really emerges from quantum coherence in neuronal microtubules. The Einstein equation correlates the stress-energy tensor Tμv to a specific divergence-free combination Ricci tensor Rμv and the metric. In the semiclassical formulation, we have Gμv = Rμv -1/2gμvR=8πG/C^4〈ψ|μvψ〉 which describes the quantum field in curved space-time geometry. But for a more precise equation in relation to the stress-energy tensor, we know that in a non-zero temperature, the wave-function is not enough to describe the physical reality. A more precise equation demands a formulation in the density-matrix form but for now there is no Diosi-Penrose model with density-matrix formulation. Such a density-matrix description can be viewed as a probability mixture of different wave-functions. Using some algebra and rules related to the mathematical manipulation of the density-matrix applied to operators, such the stress energy tensor, we found the von Neumann-Einstein equation for the general relativity equation in the density matrix operator form, Gμv = 8πG/C^4Tr[pTμv]. Thus density-matrix operator--instead of just a wave function of pure states--applied to the stress-energy tensor gives the curvature of space time, given by Einstein tensor, Gμv. The quantum fluctuation in the gravitational space-time field might feed back to decohere the quantum density-matrix. As long as decoherence can be viewed as the loss of information from a system to the environment, the density-matrix p is also related to that process and considering the measurement problem, density-matrix /garter is a more complete description of the possible outcome of the measurement. It is possible that some characteristics of the special microtubulin-associated proteins (MAP) that capes the dendritic-somatic microtubulins which could induces longer-lived nuclear spin states prevented from de-polymerization and suitable for long term information encode and memory. Understand the mechanism by which the hyper-phosphorylation in type tau-MAP displacements from microtubulins results in neurofibrillary tangles and cognitive dysfunctions in Alzheimer's disease.展开更多
In this paper the generalized equations for spinning space are investigated and the constants of motion are derived in terms of the solutions of these equations. We study the geodesic motion of the pseudo-classical sp...In this paper the generalized equations for spinning space are investigated and the constants of motion are derived in terms of the solutions of these equations. We study the geodesic motion of the pseudo-classical spinning particles in the spacetime produced by an idealized cosmic string and the non-extreme stationary axisymmetric black hole spacetime. The bound state orbits in a plane are discussed. We also show, for a conical spacetime and the Kerr spacetime, that the geodesic motion of spinning particles is different.展开更多
In this paper, we find that under a diffeomorphic of nonlinear geodesic equations are concerned with light-like extremal surfaces in curved spaeetimes. It is interesting to transformation of variables, the light-like ...In this paper, we find that under a diffeomorphic of nonlinear geodesic equations are concerned with light-like extremal surfaces in curved spaeetimes. It is interesting to transformation of variables, the light-like extremal surfaces can be described by a system Particularly, we investigate the light-like extremal surfaces in Schwarzschild spacetime in detail and some new special solutions are derived systematically with aim to compare with the known results and to illustrate the method.展开更多
Here we present a cyclicly symmetric non-vacuum spacetime, admitting closed timelike curves(CTCs) which appear after a certain instant of time,i.e.,a time-machine spacetime. The spacetime is asymptotically flat, freef...Here we present a cyclicly symmetric non-vacuum spacetime, admitting closed timelike curves(CTCs) which appear after a certain instant of time,i.e.,a time-machine spacetime. The spacetime is asymptotically flat, freefrom curvature singularities and a four-dimensional extension of the Misner space in curved spacetime. The spacetime is of type Ⅱ in the Petrov classification scheme and the matter field pure radiation satisfy the energy condition.展开更多
文摘The relation between microtubules architecture in the cytoskeletal structure inside the dendrites and soma and the emergence of neuron function and firing action potential crosses the tiny line between physics and biology. As decoherence is a fundamental mechanism in some biological process such as photosynthesis and others examples, the gravitational quantum approach may contribute to elucidate if neuron function really emerges from quantum coherence in neuronal microtubules. The Einstein equation correlates the stress-energy tensor Tμv to a specific divergence-free combination Ricci tensor Rμv and the metric. In the semiclassical formulation, we have Gμv = Rμv -1/2gμvR=8πG/C^4〈ψ|μvψ〉 which describes the quantum field in curved space-time geometry. But for a more precise equation in relation to the stress-energy tensor, we know that in a non-zero temperature, the wave-function is not enough to describe the physical reality. A more precise equation demands a formulation in the density-matrix form but for now there is no Diosi-Penrose model with density-matrix formulation. Such a density-matrix description can be viewed as a probability mixture of different wave-functions. Using some algebra and rules related to the mathematical manipulation of the density-matrix applied to operators, such the stress energy tensor, we found the von Neumann-Einstein equation for the general relativity equation in the density matrix operator form, Gμv = 8πG/C^4Tr[pTμv]. Thus density-matrix operator--instead of just a wave function of pure states--applied to the stress-energy tensor gives the curvature of space time, given by Einstein tensor, Gμv. The quantum fluctuation in the gravitational space-time field might feed back to decohere the quantum density-matrix. As long as decoherence can be viewed as the loss of information from a system to the environment, the density-matrix p is also related to that process and considering the measurement problem, density-matrix /garter is a more complete description of the possible outcome of the measurement. It is possible that some characteristics of the special microtubulin-associated proteins (MAP) that capes the dendritic-somatic microtubulins which could induces longer-lived nuclear spin states prevented from de-polymerization and suitable for long term information encode and memory. Understand the mechanism by which the hyper-phosphorylation in type tau-MAP displacements from microtubulins results in neurofibrillary tangles and cognitive dysfunctions in Alzheimer's disease.
基金*The project supported by the National Basic Research Program of China under Grant No. 2003CB716300 and Natural Science Foundation of Hunan Educational Department under Grant Nos. 03A028 and 02C203
文摘In this paper the generalized equations for spinning space are investigated and the constants of motion are derived in terms of the solutions of these equations. We study the geodesic motion of the pseudo-classical spinning particles in the spacetime produced by an idealized cosmic string and the non-extreme stationary axisymmetric black hole spacetime. The bound state orbits in a plane are discussed. We also show, for a conical spacetime and the Kerr spacetime, that the geodesic motion of spinning particles is different.
基金Supported by National Natural Science Foundation of China under Grant Nos.11026151,11101001the Anhui Provincial University’s Natural Science Foundation under Grant No.KJ2010A130
文摘In this paper, we find that under a diffeomorphic of nonlinear geodesic equations are concerned with light-like extremal surfaces in curved spaeetimes. It is interesting to transformation of variables, the light-like extremal surfaces can be described by a system Particularly, we investigate the light-like extremal surfaces in Schwarzschild spacetime in detail and some new special solutions are derived systematically with aim to compare with the known results and to illustrate the method.
文摘Here we present a cyclicly symmetric non-vacuum spacetime, admitting closed timelike curves(CTCs) which appear after a certain instant of time,i.e.,a time-machine spacetime. The spacetime is asymptotically flat, freefrom curvature singularities and a four-dimensional extension of the Misner space in curved spacetime. The spacetime is of type Ⅱ in the Petrov classification scheme and the matter field pure radiation satisfy the energy condition.