Numerical control(NC) bending experiments with different process parameters were carried out for 5052O aluminum alloy tubes with outer diameter of 70 mm, wall thickness of 1.5 mm, and centerline bending radius of 105 ...Numerical control(NC) bending experiments with different process parameters were carried out for 5052O aluminum alloy tubes with outer diameter of 70 mm, wall thickness of 1.5 mm, and centerline bending radius of 105 mm. And the effects of process parameters on tube wall thinning and cross section distortion were investigated. Meanwhile, acceptable bending of the 5052O aluminum tubes was accomplished based on the above experiments. The results show that the effects of process parameters on bending process for large diameter thin-walled aluminum alloy tubes are similar to those for small diameter thin-walled tubes, but the forming quality of the large diameter thin-walled aluminum alloy tubes is much more sensitive to the process parameters and thus it is more difficult to form.展开更多
Currently requirements of thin-walled tube with small bending radius cause the defects such as wrinkling, overthinning and cross-section distortion more prone to occur in bending process. Based on the analysis of the ...Currently requirements of thin-walled tube with small bending radius cause the defects such as wrinkling, overthinning and cross-section distortion more prone to occur in bending process. Based on the analysis of the forming characteristics by analytical and experimental methods, a complete 3D elastic-plastic FEM model of the process was developed using ABAQUS/Explicit code, including bending process, balls retracting and unloading process, and thus the plastic deformation characteristics with small bending radius were investigated. The main results show that: 1) The utmost deformation feature of the NC bending process is its continuous progressive deformation. 2) The occurring conditions of the defects such as wrinkling and tension instability in the process are obtained. The wrinkling is traditional on the double compressive stresses state and the tension instability is on the double tension stresses state. 3) The enhanced non-uniform deformation in thin-walled tube with small bending radius is demonstrated by comparing the stress/ strains distributions under the 1.5D and 1D bending conditions. 4) For ID small bending process, a new method-'stepped mandrel retraction' is proposed to improve the bending quality in experiment according to the FE simulation. The simulation results are verified by experiment.展开更多
The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finit...The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finite-element model of the process was developed based on ABAQUS/Explicit code and its reliability was validated by experiment.Then,the cross-sectional distortion behaviors of the tube were investigated.The results show that a zone of larger circumferential stress appears on the tube when bending angle reaches 30°.And in the larger circumferential stress zone,the sagging phenomenon is produced obviously.The maximum cross-sectional distortion is located in the larger circumferential stress zone and the angle between the plane of maximum cross-sectional distortion and the bending reference plane is about 50°.The position of the maximum cross-sectional distortion keeps almost unchanged with the variation of the clearances between dies and tube.展开更多
基金Project(50225518) supported by the National Science Foundation of China for Distinguished Young ScholarsProject(59975076, 50175092) supported by the National Natural Science Foundation of ChinaProject(04H53057) supported by the Aviation Science Foundation of China
文摘Numerical control(NC) bending experiments with different process parameters were carried out for 5052O aluminum alloy tubes with outer diameter of 70 mm, wall thickness of 1.5 mm, and centerline bending radius of 105 mm. And the effects of process parameters on tube wall thinning and cross section distortion were investigated. Meanwhile, acceptable bending of the 5052O aluminum tubes was accomplished based on the above experiments. The results show that the effects of process parameters on bending process for large diameter thin-walled aluminum alloy tubes are similar to those for small diameter thin-walled tubes, but the forming quality of the large diameter thin-walled aluminum alloy tubes is much more sensitive to the process parameters and thus it is more difficult to form.
基金Projects(59975076, 50175092) supported by the National Natural Science Foundation of China Project(50225518) by the National Science Found of China for Distinguished Young Scholars Project by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, PRC Project(20020699002) by the Specialized Research Fund for the Doctoral Program of Higher Education of MOE, PRC Project (04H53057) by Aviation Science Foundation
文摘Currently requirements of thin-walled tube with small bending radius cause the defects such as wrinkling, overthinning and cross-section distortion more prone to occur in bending process. Based on the analysis of the forming characteristics by analytical and experimental methods, a complete 3D elastic-plastic FEM model of the process was developed using ABAQUS/Explicit code, including bending process, balls retracting and unloading process, and thus the plastic deformation characteristics with small bending radius were investigated. The main results show that: 1) The utmost deformation feature of the NC bending process is its continuous progressive deformation. 2) The occurring conditions of the defects such as wrinkling and tension instability in the process are obtained. The wrinkling is traditional on the double compressive stresses state and the tension instability is on the double tension stresses state. 3) The enhanced non-uniform deformation in thin-walled tube with small bending radius is demonstrated by comparing the stress/ strains distributions under the 1.5D and 1D bending conditions. 4) For ID small bending process, a new method-'stepped mandrel retraction' is proposed to improve the bending quality in experiment according to the FE simulation. The simulation results are verified by experiment.
基金Projects(50575184,50975235) supported by the National Natural Science Foundation of ChinaProject(YF07057) supported by Science and Technology Development Program of Xi'an City,Shaanxi Province,China+1 种基金Project(NPU-FFR-200809) supported by Foundation for Fundamental Research of Northwestern Polytechnical University,ChinaProject(08-3) supported by State Key Laboratory of Materials Processing and Die & Mould Technology,Huazhong University of Science and Technology,China
文摘The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finite-element model of the process was developed based on ABAQUS/Explicit code and its reliability was validated by experiment.Then,the cross-sectional distortion behaviors of the tube were investigated.The results show that a zone of larger circumferential stress appears on the tube when bending angle reaches 30°.And in the larger circumferential stress zone,the sagging phenomenon is produced obviously.The maximum cross-sectional distortion is located in the larger circumferential stress zone and the angle between the plane of maximum cross-sectional distortion and the bending reference plane is about 50°.The position of the maximum cross-sectional distortion keeps almost unchanged with the variation of the clearances between dies and tube.