A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order...A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order effects of element deformations, replaces the conventional incremental secant stiffness matrix. Two deformation stiffness matrices due to the variation of axial force and bending moments are included in the tangent stiffness. They are functions of element deformations and incorporate the coupling among axial, lateral and torsional deformations. A correction matrix is added to the tangent stiffness matrix to make displacement derivatives equivalent to the commutative rotational degrees of freedom. Numerical examples show that the proposed dement is accurate and efficient in predicting the nonlinear behavior, such as axial-torsional and flexural-torsional buckling, of space frames even when fewer elements are used to model a member.展开更多
The motion track of belt spindle is important for the radial error of belt spindle. An analytical modeling method for the motion track of belt spindle under the combined effects of bending moment-torque-thermal deform...The motion track of belt spindle is important for the radial error of belt spindle. An analytical modeling method for the motion track of belt spindle under the combined effects of bending moment-torque-thermal deformation is proposed in this paper. Three running phases of belt spindle have been analyzed and modeled: the start-up phase with leaping change due to the change in force and bending moment, the accelerating phase with axis deflection, and the constant speed phase with axis regression because of the combined effects of bending moment-torque-thermal deformation. The simulation and test were completed on the belt spindle of SKVM850 machine tool, which illustrates the variation law of the radial error of belt spindle during the whole running phases.展开更多
文摘A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order effects of element deformations, replaces the conventional incremental secant stiffness matrix. Two deformation stiffness matrices due to the variation of axial force and bending moments are included in the tangent stiffness. They are functions of element deformations and incorporate the coupling among axial, lateral and torsional deformations. A correction matrix is added to the tangent stiffness matrix to make displacement derivatives equivalent to the commutative rotational degrees of freedom. Numerical examples show that the proposed dement is accurate and efficient in predicting the nonlinear behavior, such as axial-torsional and flexural-torsional buckling, of space frames even when fewer elements are used to model a member.
基金Supported by the State S&T Projects for Upmarket NC Machine and Fundamental Manufacturing Equipments of China(No.2012ZX04012-031)
文摘The motion track of belt spindle is important for the radial error of belt spindle. An analytical modeling method for the motion track of belt spindle under the combined effects of bending moment-torque-thermal deformation is proposed in this paper. Three running phases of belt spindle have been analyzed and modeled: the start-up phase with leaping change due to the change in force and bending moment, the accelerating phase with axis deflection, and the constant speed phase with axis regression because of the combined effects of bending moment-torque-thermal deformation. The simulation and test were completed on the belt spindle of SKVM850 machine tool, which illustrates the variation law of the radial error of belt spindle during the whole running phases.