The concept of weak Hopf group coalgebras is a natural generalization of the notions of both weak Hopf algebras(quantum groupoids) and Hopf group coalgebras.Let π be a group.The Morita context is considered in the ...The concept of weak Hopf group coalgebras is a natural generalization of the notions of both weak Hopf algebras(quantum groupoids) and Hopf group coalgebras.Let π be a group.The Morita context is considered in the sense of weak Hopf π-coalgebras.Let H be a finite type weak Hopf π-coalgebra,and A a weak right π-H-comodule algebra.It is constructed that a Morita context connects A#H* which is a weak smash product and the ring of coinvariants AcoH.This result is the generalization of that of Wang's in the paper "Morita contexts,π-Galois extensions for Hopf π-coalgebras" in 2006.Furthermore,the result is important for constructing weak π-Galois extensions.展开更多
In this paper we develope the notions of crossed coproduct of Hopf algebras and study an equivalent theorem of generalized crossed coproduct of H weakly comodule coalgebras and H module coalgebras. The main result is ...In this paper we develope the notions of crossed coproduct of Hopf algebras and study an equivalent theorem of generalized crossed coproduct of H weakly comodule coalgebras and H module coalgebras. The main result is to prove a structure theorem about B cocleft H module coalgebras.展开更多
The authors present the general theory of cleft extensions for a cocommutative weak Hopf algebra H. For a right H-comodule algebra, they obtain a bijective corre- spondence between the isomorphisms classes of H-cleft ...The authors present the general theory of cleft extensions for a cocommutative weak Hopf algebra H. For a right H-comodule algebra, they obtain a bijective corre- spondence between the isomorphisms classes of H-cleft extensions AH → A, where AH is the subalgebra of coinvariants, and the equivalence classes of crossed systems for H over AH. Finally, they establish a bijection between the set of equivalence classes of crossed systems with a fixed weak H-module algebra structure and the second cohomology group H2φZ(AH) (H, Z(AH)), where Z(AH) is the center of AH.展开更多
基金The Scientific Research Innovation Project for College Graduates in Jiangsu Province(No.CXLX_0094)
文摘The concept of weak Hopf group coalgebras is a natural generalization of the notions of both weak Hopf algebras(quantum groupoids) and Hopf group coalgebras.Let π be a group.The Morita context is considered in the sense of weak Hopf π-coalgebras.Let H be a finite type weak Hopf π-coalgebra,and A a weak right π-H-comodule algebra.It is constructed that a Morita context connects A#H* which is a weak smash product and the ring of coinvariants AcoH.This result is the generalization of that of Wang's in the paper "Morita contexts,π-Galois extensions for Hopf π-coalgebras" in 2006.Furthermore,the result is important for constructing weak π-Galois extensions.
文摘In this paper we develope the notions of crossed coproduct of Hopf algebras and study an equivalent theorem of generalized crossed coproduct of H weakly comodule coalgebras and H module coalgebras. The main result is to prove a structure theorem about B cocleft H module coalgebras.
基金supported by the project of Ministerio de Ciencia e Innovación(No.MTM2010-15634)Fondo Europeo de Desarrollo Regional
文摘The authors present the general theory of cleft extensions for a cocommutative weak Hopf algebra H. For a right H-comodule algebra, they obtain a bijective corre- spondence between the isomorphisms classes of H-cleft extensions AH → A, where AH is the subalgebra of coinvariants, and the equivalence classes of crossed systems for H over AH. Finally, they establish a bijection between the set of equivalence classes of crossed systems with a fixed weak H-module algebra structure and the second cohomology group H2φZ(AH) (H, Z(AH)), where Z(AH) is the center of AH.